

Introduction to computational plasticity using FORTRAN Youngung Jeong

Changwon National Univ.

Stretching a one-dimensional rod by a fixed speed for a certain time

Obtain true strain as function of time $\varepsilon(t)$

Extension – fundamental solution

- Suppose we have initial length l_0 [mm], which undergoes extension at a constant rate c.
- The above can be mathematically expressed as $l \equiv l(t)$ with $l(t = 0) = l_0$ and $\frac{dl}{dt} = c$
- Express *l* as function of t: *l(t)*?

$$l(t) = l_0 + \int_0^t dl = l_0 + \int_0^t \frac{dl}{dt} dt$$

$$= l_0 + \int_0^t c dt = l_0 + ct \ [mm]$$

True strain as function of time

$$d\varepsilon = \frac{dl}{l}$$
 Since $l \equiv l(t)$,
 $d\varepsilon(t) = \frac{dl}{l(t)}$

As such,

$$\varepsilon(t) = \varepsilon(t = 0) + \int_0^t d\varepsilon = 0 + \int_0^t \frac{dl}{l}$$
$$= \int_0^t \frac{1}{l} \frac{dl}{dt} dt = c \int_0^t \frac{1}{l_0 + ct} dt = c \left[\frac{1}{c}\ln(l_0 + ct)\right]_0^t = \ln(l_0 + ct) - \ln(l_0)$$

Program to calculate $\varepsilon(t)$

Although the below works as it is, it contains a bug - try the program by changing the initial value I0 to 5. Find the bug and address the issue.

1 <mark>c</mark>	U as a function of time	
2	program et	
3	implicit none	
4	real l0, vel, dt, t, eps	
5 <mark>c</mark>	inputs	
6	10=1	! [mm]
7	vel=0.1	! [mm/s]
8	dt=0.2	
9	t=0.	
10 <mark>c</mark>		
11	<pre>open(1,file='et.txt')</pre>	
12	<pre>do while(t.lt.3)</pre>	
13	<pre>write(1,'(2f10.5)')t,ep</pre>	os(10,vel,t)
14	t=t+dt	
15	enddo	
16	close(1)	
17	end program	
18 <mark>c</mark>		
19 <mark>c</mark>	analytical function eps as	function of t
20	<pre>real function eps(l0,vel,t</pre>	:)
21	implicit none	
22	real vel,t,l0	
23	<pre>eps=log(l0+vel*t)</pre>	
24	return	
25	end function	

Extension – Numerical solution (Euler)

- Suppose we have initial length = 1 [mm], which undergoes extension of 0.1 [mm/s].
- Numerical strategy to solve the above:

$$d\varepsilon = \frac{dl}{l}$$
$$\Delta \varepsilon = \frac{\Delta l}{l}$$

$$\Delta l = \frac{dl}{dt} \Delta t$$

With sufficiently small Δt , the convergence should be attained.

 $\varepsilon_{(n+1)} = \varepsilon_{(n)} + \Delta \varepsilon$

Program to numerically estimate e(t)

1 <mark>c</mark>	Numerical solution to find E as function of time
2	
3	program et_num
4	implicit none
5	real dt, t, l, dl,vel, eps, deps
6	dt=0.5
7	
8	t=0.
9	l=1.
10	vel=0.1
11	eps=0.
12	
13	<pre>open(1,file='et_num.txt')</pre>
14	do while(t.lt.3)
15	<pre>write(1,'(2f10.5)')t,eps</pre>
16	dl=vel*dt
17	deps = dl/l
18 <mark>c</mark>	updates
19	l=l+dl
20	eps=eps+deps
21	t=t+dt
22	enddo
23	
24	close(1)
25	
26	end

Another interesting question would be under what velocity we should stretch to have a fixed strain rate?

Find
$$l(t)$$
 that gives $\frac{d\varepsilon}{dt} = const.$
 $d\varepsilon = \frac{dl}{l} \rightarrow \int_{0}^{\varepsilon} d\varepsilon = \int_{l_{0}}^{l} \frac{dl}{l} \rightarrow \varepsilon = \ln\left(1 + \frac{l - l_{0}}{l_{0}}\right) \rightarrow \exp(\varepsilon) = 1 + \frac{l - l_{0}}{l_{0}}$
 $\rightarrow l = l_{0}(e^{\varepsilon} - 1) + l_{0} \rightarrow l = l_{0}e^{\varepsilon}$
 $\rightarrow l(t) = l_{0}e^{\varepsilon(t)} \rightarrow l(t) = l_{0}e^{ct}$
 $FYI, \quad \frac{dl}{dt} = l_{0}ce^{ct}$
 $d\varepsilon = c dt \rightarrow \int_{0}^{\varepsilon(t)} d\varepsilon = c \int_{0}^{t} dt \quad \varepsilon(t) = ct$

Stretching a one-dimensional rod by a variable speed

Extension – fundamental solution

- The problem can be mathematically expressed as $l \equiv l(t)$ with $l(t = 0) = l_0[mm]$ and $\frac{dl}{dt} = \cos(t)$
- Express the length as function of t: l(t)?

$$\begin{aligned} l(t) &= l(t=0) + \int_0^t dl = l_0 + \int_0^t \frac{dl}{dt} dt \\ &= l_0 + \int_0^t \cos t \, dt = l_0 + \sin(t) \Big|_0^t = l_0 + \sin(t) \end{aligned}$$

True strain as function of time?

$$d\varepsilon = \frac{dl}{l}$$
 Since $l \equiv l(t)$,
 $d\varepsilon(t) = \frac{dl}{l(t)}$

As such,

$$\varepsilon(t) = \varepsilon(t=0) + \int_0^t d\varepsilon = 0 + \int_0^t \frac{dl}{l}$$

$$= \int_0^t \frac{1}{l} \frac{dl}{dt} dt = \int_0^t \frac{1}{l_0 + \sin(t)} \cos(t) dt = ??$$

WolframAlpha^{¹ computational} intelligence.

integrate_0^t cost / (c+sint)			8	
$\int_{\Sigma^{0}}^{\pi}$ Extended Keyboard	单 Upload	::: Examples	🕫 Random	
Input:				
$\int_0^t \frac{\cos(t)}{c+\sin(t)} dt$				
$\int_0^t \frac{\cos(t)}{c+\sin(t)} dt$				
L Download Page				
POWERED BY THE WOLFRAM LANGUAGE				

Standard computation time exceeded...

Try again with Pro computation time

 $d\varepsilon = \frac{dl}{l} \qquad \Delta \varepsilon = \frac{\Delta l}{l} \qquad \Delta l = \cos t \ \Delta t \qquad t_{(n+1)} = t_{(n)} + \Delta t$ $\frac{dl}{dt} = \cos t \qquad \frac{\Delta l}{\Delta t} = \cos t \qquad \Delta \varepsilon = \frac{\cos t}{l} \Delta t \qquad l_{(n+1)} = l_{(n)} + \Delta l$ $\varepsilon = \varepsilon(t)? \qquad \varepsilon_{(n+1)} = \varepsilon_{(n)} + \Delta \varepsilon$

 $t_{(0)} = 0$ $l_{(0)}$ is specified $arepsilon_{(0)} = 0$

Quite customarily, we try a fixed value Δt

 $t_{(0)} = 0$

 $l_{(0)}$ is specified

 $\varepsilon_{(0)} = 0$

Quite customarily, we try a fixed value Δt

 $\Delta l = \cos t_0 \, \Delta t$

 $\Delta \varepsilon = \frac{\cos t_0}{l_0} \Delta t$

 $t_{(1)} = t_{(0)} + \Delta t$ $l_{(1)} = l_{(0)} + \cos t_0 \Delta t$

$$\varepsilon_{(1)} = \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t$$

 $t_{(0)} = 0$

 $l_{(0)}$ is specified

 $\varepsilon_{(0)} = 0$

Quite customarily, we try a fixed value Δt

 $\Delta l = \cos t_0 \, \Delta t$

$$\Delta \varepsilon = \frac{\cos t_0}{l_0} \Delta t$$

$$t_{(1)} = t_{(0)} + \Delta t$$

 $l_{(1)} = l_{(0)} + \cos t_0 \,\Delta t$

$$\varepsilon_{(1)} = \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t$$

$$t_{(1)} \leftarrow t_{(0)} + \Delta t$$
$$l_{(1)} \leftarrow l_{(0)} + \cos t_0 \Delta t$$
$$\varepsilon_{(1)} \leftarrow \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t$$

$$\varepsilon_{(1)} \leftarrow \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t$$
$$l_{(1)} \leftarrow l_{(0)} + \cos t_0 \Delta t$$
$$t_{(1)} \leftarrow t_{(0)} + \Delta t$$

 $t_{(0)} = 0$

 $l_{(0)}$ is specified

 $\varepsilon_{(0)} = 0$

$$\varepsilon_{(1)} \leftarrow \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t \qquad \qquad \varepsilon \leftarrow \varepsilon + \frac{\cos t}{l} \Delta t$$
$$l_{(1)} \leftarrow l_{(0)} + \cos t_0 \Delta t \qquad \qquad l \leftarrow l + \cos t \Delta t$$

 $t_{(1)} \leftarrow t_{(0)} + \Delta t$

$$l \leftarrow l + \cos t \,\Delta t$$
$$t \leftarrow t + \Delta t$$

$$t_{(0)} = 0$$

 $\varepsilon_{(0)} = 0$

 $l_{(0)}$ is specified

 $\varepsilon \leftarrow \varepsilon + \frac{\cos t}{l} \Delta t$

 $t \leftarrow t + \Delta t$

 $l \leftarrow l + \cos t \Delta t$

For initial length 5

$\frac{dl}{dt} = \cos t$ (cheat sheet)

$$\varepsilon_{(1)} \leftarrow \varepsilon_{(0)} + \frac{\cos t_0}{l_0} \Delta t$$

$$l_{(1)} \leftarrow l_{(0)} + \cos t_0 \,\Delta t$$

$$t_{(1)} \leftarrow t_{(0)} + \Delta t$$

1	program var_vel
2	implicit none
3	character*12 cdt
4	integer i
5	real eps, t, l, dt
6	
7 <mark>c</mark>	initial condition
8	l=5.
9	t=0.
10	eps=0.
11	dt=0.01
12	
13	<pre>open(3,file='var_vel.txt')</pre>
14	<pre>do while(t.lt.30)</pre>
15	<pre>write(3,'(3f10.5)') t,l,eps</pre>
16	eps=eps+cos(t)/l * dt
17	l = l + cos(t)*dt
18	t = t + dt
19	enddo
20	close(3)
21	
22	end program

Stretching a one-dimensional rod by a variable speed (#Exercise)

