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Recap

Measurement of force and displacement from tension tests

Physical quantity to remove the effect of geometry: engineering stress/engineering
strain

Two types of stress (strain):
Normal (tension +, or compression -)
Shear (forward +, backward -)

There are three independent planes in 3D; On each plane 1 normal + 2 shears.
Thus nine independent components comprise the stress (strain) state.

Coordinate transformation (axes transformation)
Coordinate transformation does not change the physical quantity (stress, strain)

Coordinate transformation changes the values of components and the directions of planes
associated with the stress (or strain).

Practice the coordinate transformation of tensorial quantities using the Excel spread
sheet and Fortran or Python codes available from the lecture website.
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Mean stress

2nd rank tensor in matrix form angle
100 0 0 phil 10 100.000 0.000 0.000
0 100 0 Phi 55 0.000 100.000 0.000
0 0 100 phi2 -10 0.000 0.000 100.000]

Whatever coordinate transformation you put, you’ll get the
same matrix form of the given stress tensor.

Mean stress @ Ef 2| & 3 2 hydrostatic pressure2f 1= DL} ..



Yield surface
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6(o3) — oy = 0 (plastic) oy: &= (plastic yielding)2| A|AfS HESH=E 222 S 2|
In case of ‘uniaxial’ tension stress state, Oy is the well-known

olo;i) — oy, < 0 (elastic
( ”) y ( ) yield strength of a specific material

E(Gi]-) equals to a scalar quantity that is represented as a function of stress tensor oj;

Collection of oj; coordinates in stress space that satisfy the yield criteria 6(611-) — 0y = 0can
be viewed in the form of:

1. A single point (uniaxial tension stress state, for example)

2. Locus (in the stress space having only two axes, e.g., ;1 and g,,)

3. 3D surface if the stress space consists of 041, 05, and g1, (easy to visualize?)

4. 6D surface 0441, 05, 033, 0,3, 013, and oy, (difficult to visualize)

In many cases, the yield surface (i.e., collection of oj; points that satisfy 6(611-) — oy = 0)is i
1
mathematically constructed using a ‘function’ called yield function. i



Example of yield surface represented in various (subset of) stress
spaces

Von Mises
Yield Surface 6% 7 .

’ Hydrostatic
¢ s

Tresca
Yield Surface

Om

=-plane
(Deviatoric Plane)
0,+O’|+0.= 0

J22

J11

https://en.wikipedia.org/wiki/Yield_surface
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Tresca

max(|ol _ GII|’ |011 _ GIII|, |0111 _ O.ID = Giresca

Otresca: Tresca yield (scalar) value
o!, o', ¢! principal stresses

022

Collection of points
where 0,, values are the
same

Remember that in the Mohr circle
representation, |a! — ¢!| value is associated
with the size of the circle. The radius of the
Mohr circle is the maximum shear stress.

Tresca yield criterion is sometimes
referred to as the maximum shear
yield criterion.
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Tresca yield condition:

max(|c' — 6|, |o! — 6", |6'" — ¢!|) = 300 [Mpa]
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von Mises |

max(|o! — o], |0/ — 61|, |6 — 6'|) = Grresca

von Mises postulates plastic yielding occurs when the root-mean-square shear
stress reaches a critical value:

(GI _ 011)2 n (011 _ 0111)2 n (0,1 _ 0111)2 -

C
3

If the uniaxial yield stress is Y, the principal stress value will be something like ¢! =
Y,o'!l = 0and 6! = 0. In that case the VM criterion becomes:  y2

2 2 2 3
(O.I . O.II) 4 (GII N GIII) 4 ( ) _ EYZ
3 3
Multiply 3 on both (GI — GH)Z + (GH — GIH)Z + ( )2 — 2Y?2
sides

Y is the yield strength (stress) under uniaxial tension state.



von Mises |

2 5 5 With Y being the yield
(ol = o) + (o' = o™)" + (ol — 6!M)" = 2Y2  stress under uniaxial
tension

In a general stress space where shear components may not be zero,
the above becomes:

(011 — 022)% + (035 — 033)% + (033 — 011)% + 6(0%, + 053 + 0%3) = 2Y?

The above has many alternate forms. Among others, one based on deviatoric
stress tensor s is very simple and useful:

3s:s=3 Sijsij = 2Y2



von Mises |l

3D stress tensor can be too much complicated. Often, problems can be
approximated to be that under the plane-stress condition.

In 2D space, the stress
tensor becomes ...

o117 012 O 011 O1y -
012 022 0 012 022]
0 0 O

(011 — 022)% + (055 — 033)% + (033 — 011)% + 6(0f, + 055 + 0f3) = 2Y?

2D spacﬂubspace

(011 — 022)% + 03, + 0fy + 607, = 2Y?

2 2 _ y2
ifo, =0 > O3y + 0f1 — 011022 =Y



von Mises |V

2 2 _v2
O3, +0{1 — 01102, =Y

2 2 _
\/022 +0f; — 01102, =Y

Suppose you have the uniaxial
(100,100) tension yield stress value of

100 MPa
022(*) @)

Solve /502 + g2, — 500,; = 100

'he line at which g5, = 50

502 + 0-121 - 500-11 = 1002
02, — 5001 + 252 = 1002 — 50% + 252
(0‘11 - 25)2 = 150x50 + 252

(100,0) Therefore,
o1, = +V8125 + 25 = 490.1 ...+ 25

X, = +90.1 + 25




Tresca and von Mises H| 1!

Follow below link

https://youngung.github.io/yieldsurface/
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Yield function,
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von Mises equivalent strain
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Yield and plastic flow

When the stress state of a material on the yield surface, the material plastically flows.

* Material (plastic) flow means that there is a certain amount (and type) of (plastic) strain

 This plastic flow occurs instantaneously: it occurs as soon as the stress state of
the material reaches the yield point (locus, surface ... ); as soon as the material
satisfies the yield criterion.

 How, then, does the material flow? In which direction? And what will be its magnitude
along a particular direction?

* The answer is described by so-called the flow theory: the theoretical approach that
describes the flow behavior of materials (metals, composites and so forth).



Yield and Flow

If a unit volume of material is under a load sufficient to cause plastic deformation
(O'if}ow), the material responds in terms of plastic strain increment (dsﬁl) —that’s

how we deal with ‘instantaneous’ nature found in the material’s responsive
behavior to mechanical stimulus (in this case usually stress/force).

*  Flow stress (of}ow): ASHAM &0 HAZ Lo 7|7 {IoiA 2Rt S

. SHMENT} B2 B (yield surface) 910l XYL E| B ZHHZ 24 #HEO)
HFAHS

A SECE (thus dsﬁl £ 0).

-

e At that instant of material flow, the incremental work done is then:
Yield surface

1
dwP! = Gf}owdsﬁ

Strain hardening

flow

oi;_ | : the flow stress may depend on the amount of The flow stress usual Iy

plastic strain applied to the material increases as strain increases



Integration strategy for plastic flow

At time=t,,

Gﬂo"" presence of stress that

makes the material flow

Instantaneous
response in
terms of plastic
strain increment

dg;; incremental plastic
strain occurs within dt
time increment

We’ll'lhave new external mechanical stimuli
(load, rigid-body rotation, displacement and
so forth)

dt: this increment may have a
significant impact on the entire
solution and should be carefully

determined.

Next time stamp =ty +
dt

Next strain: s( to) 4 dej;

Next flow stress from
strain hardening rule:
o = ke"

N (S, 5 AN
o] & B Of S,

Now we have new material states for time

t, (i.e., ty + dt) such as s] =) gea(t=ty)

The strain hardening rule updates the yield
surface for t, + dt

As we discussed, if we use isotropic
hardening and Hollomon hardening model

04 = k(seq)n

** Elasticity was not
considered




Flow theory

At time=t,),
0{}0‘” : presence of stress that

makes the material flow

Instantaneous
response in
terms of plastic
strain increment

How to determine de;;?

dg;; incremental plastic
strain occurs within dt
time increment




Metal flow theory |

1 \ =
de;-c]-Otal = dEir; -I-X._" X| HEH-E 2 plastic strain + elastic strain

Etd TLZHO| M 2] flow : Hooke’s law
el el _ p-1 Eiirg: 4t rank elastic moduli tensor
dojj = Ejjq deg dejj = Ejjq dogg | ™

3tof, Eb GO0l A, EHY HE ST SZHO| ME 27 HEISHCHS

A —EzL 2|2 ]Ei—jlhg_ AN MBIIEOS At =




Metal flow theory |

E'ichtal Ele]l XN HEE2 plastic strain + elastic strain (additive decomposition)

EtM TL7H0| A 2] flow : Hooke’s law

el el _ —-1
doj; = Ejj deg dej; = Ejjiq doy

Ejji: 4™ rank elastic moduli tensor

24 FAZH0| A 2] flow: (plastic) flow theory
pl cl)pl is the plastic potential (defined in the stress space)
(I) (0') dA: plastic multiplier (in the incremental form) usually is a constant

ae?' = an’ nthe
ij T a dej; incremental plastic strain
Oij a¢p% ),

d0ij
¢P! at the stress state of ojj

: normal direction vector attached to the plastic potential




Metal flow theory |

d¢P' (o)

aGij

$P! (o) the plastic potential is determined by a certain rule called “flow rule”

P (o) . , . apPl(o) . . .
S0 can be also written in the principal stress space such that - with the index i being 1,2, and 3
ij i
: o 9 P! d¢Pl(c1,0,,
Thus, in the principal stress space, q;c.(.c) becomes 2% (g;_cz %),
ij i

d$pP(01,02,03)
661
very important observation is that such a direction is normal (perpendicular) to the potential.

actually is a three dimensional direction vector attached to the plastic potential; One

Incompressible materials (such as metals) are well
described by the associated flow rule, in which the plastic
potential is described by a homogeneous yield function




Metal flow theory with homogeneous function

Then, what is a homogeneous function? What properties should we know?

A homogeneous function (f) of degree n in the space of (x,y) obeys: i Function fis called as a

f(tx,ty) = t"f(x,y) where tis any arbitrary constant _homogeneous function of degree n

= = e e e e e e mm e e o mm Em mm mm mm mm mm mm e e e m Em mm Em mm mm mm mm e e e e = = = = oy

Euler’s theorem on the Homogeneous function of degreen
of (x,y) of (x,y) == Can be extended to a larger dimensional space

=nfxy) !

If there is a homogeneous function constructed in the stress space of (gy1, 025, 015):

0f(011,09,0 0f(041,052,0 0f(0411,052,0
+ 0,y £(011,022,012) + 0y, f(011,022,012) + 0y, £(011,022,012) _ nf(o-ll’o-zzlo-lz):
60'22 60'12 60'12

a homogeneous function f of degree n in the space of (6,1,0,,, 712)

0f(011,022,012)
60'11

011

If the homogeneous function in the space of (6) has the degree of 1:
af (o) _
l] 6_ - f( )




Metal flow theory

aq)pl((,) We assume cl)pl to be a homogeneous yield

aO'ij

function of degree one in the stress space (oj;)

From the general form of the flow rule:

pl _ aq> (o)
ddbP! dey, =dA
¢* (o) No summation symbols missing H 011

1
dsﬁ = dA

d0;;

= 2@ Pl = 2@
00322 0033

If we multiply stress components with the same set of indices to
strain increments on the left and the right hand sides,

pl a(l)pl (6) — .
oxdey = dAoy e Do not forget the missing summation symbols!
ij
P! (o
oidell = dhoy; %T() — dA ¢P'(0)

ij

c: deP! = dwP!

If we use a yield function for

dP'(6), ®P'(0) can be treated as
an equivalent stress.

In that case,
dA dPl(6) = dA 09 = dwP!
[LF2fA] d) = decd



Metal flow theory Il (normality rule)

In the principal space of strain and stress tensors

Pl(o)
1 dpP (o
del, = dA———— IpPl(e) . . . .
) d0;; de; = d)\a— with i=1,2,3 (again, no summation)
Oj
....... 1 1_ 1 1 1
““ll-l‘- Ta, . dseV dSF - (dsll) ) dsg y) deg )
time: t
/ def!
. 4 : Incompressible materials (such as metals) are well described
2 time: ¢ : by the associated flow rule, in which the plastic potential is
; 0 : described by a yield surface
>0'1 Associated flow rule is sometimes called ‘normality’ rule
“-, / The term associated is originated from the fact that the
03 principal spaces of the flow stress and plastic strain
increment tensors are ‘co-axial’. The basis vectors of each
“Plastic coordinate system are associated with each other (in other
BRREEEEE potential words, the two coordinate axes are ‘aligned’).




Fig 2-7 and Fig 2-8.

See Fig 2-7 and Fig. 2-8




Associated flow rule and plastic strain ratio

\/(011 — 02)2 + (052 — 033)% + (033 — 011)% + 6(07, + 033 + 053) oV

2

If your material follows von Mises yield criterion and and the associated flow rule:

vm
vim,eq a(I)

60-11

vm,eq.

de = de, 4 € : von Mises equivalent strain

In the principal stress space:

vm
vim,eq 0

de %

= dg, Principal space of strain is co-axial to that of stress.



Associated flow rule and plastic strain ratio

vim
meq 907 g (01— 002 + (0, — 05)? + (05 — 0)?

1 _ 2 _ 2 _ 2
The above can be expressed as Xz = ¢V™ where X = (91-02)"+(o 203) +(g3-0)

Chain rule: when z = f(y) and y = g(x) and if you want to obtain %, you can use below relation:

ox
_ 0z0y
dx 0y ox
ad)vm _ a(bvm 0X _ 1X_% _20'1 — 202 + 201 — 203_ . X_% -20'1 — Oy — (73- _ 1 -261 — Oy — 0_3-
do,  0X 0o, 2 _ 2 I _ 2 I ¢vm [ 2
aq)vm _ a(bvm 0X _ 1 1 _202 — 20'1 + 20'2 — 203_ _ X_% _20'2 — 01 — O3] _ 1 -262 — 01 — 03]
do, 09X do, 2 _ 2 | _ 2 I ¢vm | 2

acl)vm . 1 203 — 01 — 0>
003 B (me 2




Associated flow rule and plastic strain ratio

™™ 2 2 2
deV™ed—— = dgy (01— 02)* + (02 — 03)° + (03 — 01)

061 2 — ¢Vm

If the material’s [100 0 O] O| 27 AN HAEDIS o7l I

0 0 0 o -
stress state is 0 0 0 gAY a2 EALZDF? (incremental form)

Again, note that material follows the von Mises yield criterion-and the associated flow rule

€ = deg — = dE& = = ds
9o cI)Vm 100 2

de, = deV™ed [202 01— 03] _ deVm-eqd [—100] _ devVimed : vmeq

c|>"m 100 2 2 Can we obtain deV™*¢4 ?
202—01—0 deVmed r—_100 dsvmeq
— Jd~vime 3—01—02| _ _ 1

deg = de"™™™ g [ ]_ 100 [ 2 ]_ 2 dwP! _ Oy dSp o dspl

¢ devmed — ) _ kK
O-vm,eq oV, eq O-vm eq

o

pl ;_pl  pl
le;, de;, , des




Associated flow rule and plastic strain ratio

apvm . : : . o
Aa"m'eq% = dg; index i denotes each basis vector (or axis) of the principal space.
1

If th terial’s st tate | 180 180 8 and the material plastically flows, what is the
€ materials stress state 1s 0 0 0 incremental form of plastic strain tensor?

Assumption: material follows the von Mises yield criterion and the associated flow rule:

_ ovmeq '™ _ o vmeq 1 [201-02-05] _ deV™ed12x100-100] _ dev™ed
de; = de = de = =

9o, pvm 2 100 2 2

vm \/(01 —0,)? + (0, —03)? + (03 — 0,)?
¢ = 2

daz = devmeq 1 [202—01—63 _ devm.eq [2x100—100] devm.eq

pvm 2 100 2 2
d{-j — dgvm'eq 1 [203—01—0'2 — dgvm.eq [—200] — —dgvm'eq
3 v 2 100 2



€3,
e, 011 0 0
’ g = 0 079 0
. 0 0 0
fl &2 35 B 2= Q1 S8 HESIOAM A0 HAE HlEO| £ Zs‘fll o=z
S| UL} Normality rule (associated flow rule)= A-2SH Sl & H O| Sreieh =
U= SHIEUA 2| 6, /01,2 BIS 242 von Mises 12|11 1 TrescaZ ’51%5 of 5t 2f

1) von Mises = 0|

'('5|.| %I- %@I )é)I-EH 0-||A-| (I)VM — \/(011—02)2"'(022)2"‘(—01)2

1 d 1 dpVM
deP’) = A SE— 2|1 deb) = A2 — a2 2 352 A0[2E, £ O
11 011 22 do,,
oy dpVM dpVM 2011—0 2022—0
PAoH Ge— Tt t— 2 2t TSt EIZCH 0| 22} 2 Zwon
d0'11 d622 2 2
1
[Ch2F A dely _ (2011 022)/ (2022 011) __ 2011—032 _ 2-022/011 _ _4
gé 2022-011  2022/011—1

— Solve following forx: 2 —x = —-4Q2x—-1) > 7x =2~ x=2/7
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