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Coordinate transformation 예제
§Variant selection

§Schmid’s law와비교



Variant selection

Schematic illustration of 
martensitic transformation

Gey, N.; Petit, B. & Humbert, M. 
Electron backscattered diffraction 
study of ε/α` martensitic variants 
induced by plastic deformation in 304 
stainless steel Metallurgical and 
Materials Transactions A, Springer 
Boston, 2005, 36, 3291-3299

Mother austenite KS (24) NW (12) WLR-Bhadeshia (24)

Transformation matrix between
axes of parent austenite and child? a"#

a"#
$% &'(.←+ =

? ? ?
? ? ?
? ? ?

How to obtain transformation matrix (a"#)? 
We’ll study it step-by-step in case you know

1). Habit plane and direction of parent (austenite)
2). Habit plane and direction of child (martensite)



Variant selection
Example of martensite variant selections
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1,1,0 vector 𝐝𝐩

Superscript p(𝛾) and c(𝛼) denote 
• parent (i.e., 𝛾 austenite)
• child (i.e., a 𝛼 martensite variant)
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(1, −1,0) vector 𝐧𝐜.
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1). Habit plane and direction of parent (austenite)
2). Habit plane and direction of child (martensite) 111 I 110 I ∥ 110 $ 111 $
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Note that P axes and C axes are physically equivalent



Variant selection
𝐚"#
KH←+ = 𝐚G←KH
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Principal of maximum energy:
U. = 𝛔: 𝛆.T(… U7 = 𝛔: 𝛆7T( ….     U7U = 𝛔: 𝛆7UT(

U" = 𝛔: 𝛆"T(.     with index i to denote i-th variant
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Variant 1

austenite
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Variant 2

= 𝐚KH←G ⋅ 𝐚@←+

…
.

Variant 24

austenite 𝛔𝛔

Transformation characteristic strain 𝛆T( is a tensor. Over the calculation of U, stress and strain tensors should be 
written in the same axes; thus need correct transformation matrices (orientation)



Variant selection (Benchmark test)

Martensite pole figures allowing all variants

Cube textured 100% austenitic polycrystal

Humbert MSEA (2007)

• Humbert, M.; Petit, B.; Bolle, B. & Gey, N. Materials Science and Engineering: A, 2007
• Kundu, S. & Bhadeshia, H. Scripta Materialia, 2006

WLR:
γ → α

γ

𝛔𝛔 α



Coordinate transformation and Schmid law, Schmid factor

• Condition for dislocation motion (= condition for plastic yielding):
If RSS reaches a certain (critical) value, the dislocation will start moving

• Ease of dislocation motion depends on crystallographic orientation with 
respect to the external loading direction

τR = 0
λ = 90°

σ

τR = σ/2
λ = 45°
ϕ= 45°

σ

τR = 0
ϕ= 90°

σ

τXYY = τZXYY

Dislocation slip condition
(≈ atomic yield condition)

τXYY = 𝜎 cos 𝜆 cos𝜙
cos 𝜆 cos𝜙: Schmid’s (orientation) factor
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Example: yield of single crystal
a)  Will the single crystal yield?  
b)  If not, what stress is needed?

τXYY = σ cos λ cosϕ We learned this equation that correlates the external loading 
(𝜎) and the orientation of slip system (λ,ϕ).

τXYY ≥ τZXYYCondition for 
dislocation to slip?

Condition 1. τZXYY = 20.7 MPa

Condition 2. τXYY = σcosλ cosϕ
= 45cos35° cos60° [MPa]
≈ 45×0.819×0.5 ≈ 18.4 [MPa]

Check. τXYY ≥ τZXYY

45 MPa is not sufficient enough to cause this slip 
system (𝜆 = 35°, 𝜙 = 60°, with τZXYY = 20.7 MPa) 
to slip (yield)

l = 35°
f = 60°

σ = 45 MPa

Adapted from 
Fig. 9.7, 
Callister & 
Rethwisch 
9e.

σ = 45 MPa
Condition 1. External 
load of 45 MPa

Condition 2. Slip 
system characterized 
by 𝜆 = 35°, 𝜙 = 60°

Remember 
this value



Transformation: stress in CA to that in Slip. Axes.

l = 35°
f = 60°

σ = 45 MPa

σ = 45 MPa

xs

ys

zs

�1
�1

zc

�2

�2
�

�

xc

yc

ϕ. = 25°, Φ = 60°, ϕ7 = 19°

0.788 0.547 0.282
-0.495 0.291 0.819

0.366 -0.785 0.500

Matrix form of the 
stress tensor 𝛔 in 
crystal axes

0 0 0
0 0 0
0 0 45

Matrix form of the 
stress tensor in slip 
system axes
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Zs = a"Na#tσNt

Zs = 𝐚 ⋅ 𝛔Zs ⋅ 𝐚L
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Single crystal axes

𝐛
𝐧

#2 Slip coord. sys. 𝐚𝐢𝐣
𝐬𝐥𝐢𝐩 𝐚𝐱𝐞𝐬←𝐜𝐫𝐲𝐬𝐭𝐚𝐥 𝐚𝐱𝐞𝐬

This gives the transformation matrix like:

𝐚𝐢𝐣
𝐬𝐥𝐢𝐩 𝐚𝐱𝐞𝐬←𝐜𝐫𝐲𝐬𝐭𝐚𝐥 𝐚𝐱𝐞𝐬=

1

2

3

Condition 2. τXYY = σcosλ cosϕ
= 45cos35° cos60° [MPa]
≈ 45×0.819×0.5 ≈ 18.4 [MPa]

3.577 10.389 6.344
10.389 30.173 18.424

6.344 18.424 11.250



Finding resolved shear stress = Stress tensor transformation

§가령, 단결정결정립이응력텐서 𝝈를받는상태를생각해보자.

§여러분이관심있는 slip system은, 결정면방향 (denoted by vector n)과슬립방향
(denoted by b) 으로표현되며, 다음과같은 resolved shear stress 를가진다:

§더욱더일반화시켜, 임의의 slip system s를대상으로표현하자면…

§실례를들자.

τXYY = 𝛔 ⋅ 𝐧 ⋅ 𝐛 = σ"#n"b#

τXYY� = 𝛔 ⋅ 𝐧� ⋅ 𝐛�

예를들어, 𝐧�와 𝐛�는각각 [1,1,1]/sqrt(3).   
[1,1,0]/sqrt(2)

τXYY� = 𝛔 ⋅ 𝐧� ⋅ 𝐛� = σ"#n"�b#� = O
"

/

O
#

/

σ"#n"�b#�

n"�b#� → 𝕞"#
� (Schmid tensor;will see more precise de�inition later)

Schmid factor is a special case of Schmid tensor when the crystal is
imposed to a uniaxial stress state
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Cubic unit cell에의한 crystal axes



t. b. n.
t7 b7 n7
t/ b/ n/

Stress transformation in Schmid law

§Schmid law is merely a special case of stress tensor 
transformation (= Finding a resolved shear stress component
to a particular slip system under uniaxial stress state).

𝛔Z(��T't s��� =
0 0 0
0 0 0
0 0 σ//

𝐞"Zs ⊗ 𝐞#Zs

τXYY = σcosλ cosϕ
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τXYY� = σ//
(�T't)n/

�,(�T't)b/
�,(�T't) = σ//

(�T't) 𝐚�T't← Yt"@ ⋅ 𝐧(Yt"@) / 𝐚
�T't← Yt"@ ⋅ 𝐛(Yt"@) /
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Single crystal axes
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τXYY� = 𝛔(Yt"@ s���) ⋅ 𝐧�,(Yt"@ s���) ⋅ 𝐛�,(Yt"@ s���) Will give the same answer



Schmid factor and alternative ways

§We do not know the exact stress state of individual grains, even if we know the stress given to the entire sample.

§One might assume the stress state of individual grain is equivalent to that of macroscopic loading (Sachs) 

§This assumption may look very primitive s, but many pioneers have done it in early 20th century.

§We will look at Taylor, Sachs and self-consistent approach on this problem.

This equation is widely used in MSE community to calculate the Schmid factor of individual 
grains:

The hidden assumption is that you know the stress state of grain, and it should be 
‘uniaxial’ stress value σ
The fact is, in many cases, you really don’t know the stress state of grain, even if you 
know the macroscopic stress. Even if the sample is under uniaxial loading, the stress state 
of individual strain can be very different from that of specimen because of ‘interactions’ 
with the neighbor grains – some grains may be stiff than others and vice versa.

τXYY� = σ�'G��G�@"G ��" ⋅ 𝐧� ⋅ 𝐛�


