
Introduction to
computational

plasticity
using

FORTRAN
Youngung Jeong

Changwon
National Univ.

FORTRAN

• FORMULA TRANSLATION
• Compile, Object Files, Executable
• Much faster than other advanced languages
• The contents you’ll learn
• Algorithm
• Numerical approach for plasticity theories
• Other numerical techniques

REF: https://web.stanford.edu/class/me200c/

Installation

• GNU FORTRAN is recommended for beginners.
• Available open to everyone (free)
• I am quite familiar with (~10 years of experience)

• Intel FORTRAN is recommended as well.
• But it is a commercial product; you should pay.
• Nevertheless, if you are a student, you could request

for a license for a year for free.
• It could be faster than GFORTRAN (when optimized)

Choice of your editor
• Whatever tickles your fancy.
• Some might claim “Syntax highlighter is for newbies.” If you agree,

you could use:
c:\> notepad <path-to-file-name>

• to which I do not agree. There are many advantages of using
advanced editor when you are programming. Syntax highlighter
generally helps reducing ‘errors’.

• I personally use EMACS, which I DO NOT recommend my students
to learn - it takes a lot of efforts and time to get used to it.
• (*Unlike* many other cases, once you get used to it, you’ll love it)

• For Windows users, I’d recommend
• NOTEPAD ++ (https://notepad-plus-plus.org),
• ATOM (https://atom.io)
• sublime text (https://www.sublimetext.com) …

• For those who look for more advanced features ..
• EMACS (https://www.gnu.org/software/emacs)
• VIM (https://www.vim.org)and so forth

https://notepad-plus-plus.org/
https://atom.io/
https://www.sublimetext.com/
https://www.gnu.org/software/emacs/
https://www.vim.org/

Compile and Linking

Translating a source code (to a machine
code then) to an object file

Linking objects files to build your
‘executable’ program

Compile and Linking

Compile:

c:\> gfortran -c <path-to-file> -o <path-to-object>

Linking:

c:\> gfortran –o <path-to-executable> <path-to-object 1> … <path-to-object n>

Example:

Suppose you wrote a program consisting of two files <a.f> and <b.f>. Below
sequence should be performed in order for you to obtain an executable file
<c.exe>:

c:\> gfortran –c a.f –o a.o

c:\> gfortran –c b.f –o b.o

c:\> gfortran –o c a.o b.o

COLUMN position rules

• COL.1 : BLANK or ‘C’ or “*” for comments
• COL.1-5 : statement label (reference to a specific

statement line; optional)
• COL. 6. : continuation of previous line (optional)
• COL 7-72: statements

• Comments can be written by two methods:
• 1) Use COL 1 rule
• 2) Use ! symbol to comment out the following cols.

Your first FORTRAN program

program hi
write(*,*) “Hello, world”
end program

1. Let’s save this file to <hi.f>
2. Compile it
3. And … run!

c:\> gfortran –c hi.f –o hi.o
c:\> gfortran –o hi hi.o
c:\> hi
“Hello, world”

Tip: case-sensitivity applies only to character variables.

Make (optional for advanced students)

• Make programs are usually to reduce the time
required for ‘building’ the program
• Some programs may require a lot number of

objects
• In many cases, only a few objects among many

are revised when ‘incrementally’ developing
program
• Make programs are useful for such occasions

https://www.gnu.org/software/make/

Types

• INTEGER (정수)
• REAL (실수)
• COMPLEX (복소수)
• LOGICAL (Boolean, 참 .true.혹은거짓 .false.)
• CHARACTER (문자)

Constants

• 1 0 -100 + 327 +15
• 1.0 1. -0.25 2e6 -5.3e-4
• -5.d-4 -5.e-4
• .true. .false.
• ‘ABS’ “ABC” “1!@” “Hello, world”

Expressions

• OEPRAND(피연산수) OPERATOR(연산자) OPERAND
Ex) x + y

Types of operator
* (multiplication, 곱하기)
+ (addition, 더하기)
- (subtraction, 빼기)
/ (division, 나누기)
** (exponential, 지수)

Assignment

• Variable = expression
• X = 5*1e-5+3.**2
• Y = (X+X**2)/3.
• Y = (Y+2)

• RULE: Evaluate on the right first, then assign the
result to the left.
• In that sense, the equating symbol (=) is more like

an arrow (←)

Logical expressions
A .gt. B (or, A>B)

A .ge. B (or, A>=B)

A .lt. B (or, A<B)
A .le. B (Or, A<=B)

A.eq.B (or, A==B)
A.ne.B (or, A!=B)

Others logical expressions with combination of
.and.

.or.
Examples:

(A.eq.B).or.(A.eq.C)

(A.eq.C).and.(C.eq.D)

IF statement

• Following format:

IF (a logical expression) THEN
statements A

ELSEIF (another logical expression) then
statements B

ELSE
statements C

ENDIF

DO-END Loops

DO i=1, n
statements …

ENDDO

- Other loops:
DO WHILE (logical expression)

statements …
ENDDO

Arrays

• One dimensional
• REAL A(20) 1 axis, 20 slots
• REAL B(20,3) two axes, with 20 and 3 slots
• INTEGER C(0:19,3,4) three axes, 20, 3, and 4

slots (total 20x3x4 slots)

Sub programs

• FUNCTION
• SUBROUTINE

INTRINSINC functions

• FUNCTIONS that come along with FORTRAN
• Examples:

ABS
MIN
SQRT
SIN
COS
ASIN
ACOS
ATAN
ATAN2
LOG
EXP …

WRITING your own functions (EX)

REAL FUNCTION addition(a,b)
real a, b
addition =a +b
return
END FUNCTION

Main program to use your function

PROGRAM main
real addition
real a,b,c
a=3.
b=203.3
c=addition(a,b)
Write(*,*) c
End

REAL FUNCTION addition(a,b)

real a, b

addition =a +b

return

END FUNCTION

main.f add.f

C:\> gfortran –c main.f –o main.o

C:\> gfortran -c add.f –o add.o

C:\> gfortran –o myprogram main.o add.o

C:\> myprogram

C:\> gfortran –o myprogram main.f add.f

Consider writing a batch file

• Compile and execution is usually done quite
repeatedly, while all the tasks requires you
type in command line prompt.
• In order for you to boot your speed and

reduce the tedious typing of the same
commands, I would recommend you to write
your sequence of commands to a batch file.

FILE I/O
• OPENING/CLOSING a file

• OPEN(list-of-specifiers)

• UNIT, FILE, STATUS, …

Example (OUTPUT):

OPEN(30, FILE=‘dummy.txt’,status=‘unknown’)

WRITE(30, *) ‘Hello, world’

CLOSE(30)

Example (INPUT):

OPEN(3, FILE=‘list-of-integers.txt’, status=‘old’)

READ(3,*) i

WRITE(*,*) i ! Print the integer to screen (standard output)

CLOSE(3)

SIMPLE I/O

• READ(*,*) variable (or constant)
• WRITE(*,*) variable (or constant)

• In combination with WRITE(*,*), you might
want to consider formatting the output..
• Example:
• WRITE(*,’(3f7.2)’) 3.,4.,5.

I/O Format

• F
• E
• I
• A
• X
• Combination of the above…

