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Recap

Measurement of force and displacement from tension tests

Physical quantity to remove the effect of geometry: engineering stress/engineering
strain

Two types of stress (strain):
Normal (tension +, or compression -)
Shear (forward +, backward -)

There are three independent planes in 3D; On each plane 1 normal + 2 shears.

Thus nine independent components comprise the stress (strain) state.

Coordinate transformation (axes transformation)
Coordinate transformation does not change the physical quantity (stress, strain)

Coordinate transformation changes the values of components and the directions of planes
associated with the stress (or strain).

Practice coordinate transformation using the Excel, Fortran code, Python code.
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Deviatoric stress
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(stress deviator, deviatoric stress tensor)

- Stress transformation sheet

(mean stress)



Mean stress

2nd rank tensor in matrix form angle
100 0 0 phil 10 100.000 0.000 0.000
0 100 0 Phi 55 0.000 100.000 0.000
0 0 100 phi2 -10 0.000 0.000 100.000)

Put whatever rotation you’ll get
the same stress tensor.

Mean stress & E} 2| & = hydrostatic pressurect = SCf..



Yield surface
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Yield surface

Given the stress space, the yield criterion can be defined as

E(O_ij) — oy = 0 (plastic) Oy: a scalar value that represents the onset of yielding.

E(Gi]-) — 6, < 0 (elastic) In case of ‘uniaxial’ tension stress state, oy, is the yield strength

E(Gi]-) returns a scalar value as a function of stress tensor oj;

Collection of oj; points in stress space that satisfy the yield criteria 6(011-) — oy = 0 can be

viewed in the form of:

1. A sing point (uniaxial tension stress state, for example)

2. Locus (in the stress space having only two axes, e.g., ;1 and g5,

3. 3D surface if the stress space consists of 041, 05, and g1, (easy to visualize?)
4. 6D surface 044, 055, 033, 0,3, 013, and ag;, (difficult to visualize)

In many cases, the yield surface (i.e., collection of oj; points that satisfy E(Gi]-) — oy = 0)is i
1
mathematically constructed using a ‘function’ called yield function. i



Example of yield surface represented in various (subset of)
stress spaces

Von Mises
Yield Surface

01

0s”

S

Tresca
Yield Surface

Om

=-plane
(Deviatoric Plane)
0,+O’|+0.= 0

022

011

https://en.wikipedia.org/wiki/Yield _surface



ot = o A coordinate transformation
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Tresca |

maX(|O'I - O'H|, |0'II I|) O-tresca

Otresca: Tresca yield (scalar) value

al, !l o!: principal stresses

022

> 0
0

‘ 011

0

022
0

Collection of points
where 05, values are the

same

Remember that in the Mohr circle
representation, |a! — ¢!!| value is associated
with the size of the circle. The radius of the
Mohr circle is the maximum shear stress.

Tresca yield criterion is sometimes
referred to as the maximum shear
yield criterion.
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von Mises |

max(|o! — 61|, |0/ — 61|, |6 — 6'|) = Orresca

von Mises postulates yield occurs when the root-mean-square shear stress
reaches a critical value

(01 _ 011)2 n (GII _ 6111)2 n (01 B 0111)2 -
> —

C

If the uniaxial yield stress is Y, the principal stress value will be something like o' =
Y,o!! = 0and ¢! = 0. In that case the VM criterion becomes:

2Y? B
3
2 2 2
(o' — ) + (o' — o')* + ( ) _ EYZ
3 3
Multiply 3
on both (o! — 011)2 + (ol - 0”1)2 +( )2 — 9y2

sides



von Mises |

With Y being the yield
((51 — 511)2 + (GU — 0111)2 + (gl — (;111)2 = 2Y?2 stress under uniaxial
tension

In a general stress space where shear components may not be zero,
the above becomes:

(011 — 022)% + (025 — 033)% + (033 — 011)% + 6(0%, + 053 + 073) = 2Y?

The above has many alternate forms. Among others, one based on deviatoric
stress tensor s is very simple and useful:

3s:s=3 SijSij = 2Y2



von Mises |l

3D stress tensor can be too much complicated. Often, problems can be
approximated to be that under the plane-stress condition.

In 2D space, the stress
tensor becomes ...

011 012 0 011 0121 <«
012 022 0 012 022]
0 0 O

I

v

(011 — 022)° + (022 — 033)* + (033 — 011)° + 6(of; + 033 + of3) = 2Y?

2D space subspace

(011 — 022)% + 055 + 0fy + 607, = 2Y?

2 2 _ y2
if 0, =0 > O3y +0{1 — 011022 =Y



von Mises |V

2 2 _y2
O3 + 0{1 — 01102, =Y

2 2 _
\jazz +0f; — 01102, =Y

Suppose you have the uniaxial
(100,100) tension yield stress value of

100 MPa
022(*) @)

Solve /502 + g2, — 500,; = 100

'he line at which g5, = 50

502 + g4 — 500,; = 1002
oZ — 500, + 252 = 1002 — 502 + 252
(0'11 - 25)2 = 150%50 + 252

(100,0) Therefore,
o1, = V8125 + 25 = 490.1 ...+ 25

X, = +90.1 + 25




Tresca and von Mises H| 1!

Follow below link

https://youngung.github.io/yieldsurface/




Invariants

% M principal stresss T30 E Y B = ChA| & 400 £ A}

011 — A 012 013 Where
A= 021 Oz — A 023
_ [ =041 + 0y, +033
031 032 033

) 2 2
I, = (o1, + 053 + 073 — 011022 — 02033 — 033011)

_ 2 2 2
I3 = 071022033 + 201,0130,3 — 011053 — 022073 — 03307,

O17IM 1y, I, I3 (X2 Er&EA S BHE LR oA HHY X =L O] Al 4=
invariants(= H 252t StCH O 7| A 9| 1; = 641 + 0,5 + 033 = 30,,. A
259 g2 o, UL FASICI R O L, 2t =2 o gfdt e F2SICE




plastic work)

2: 20|ct= =2lFe 20N TRl E 2HEH

28 2IOE Y (specific work) [H2fA] & /5 1
C

— = [m/m] N/m3
U2 AGdHAS St 240 71T S5 1 EIS QI HAE 2 FO{X[=
7Tl o K| 2] S5 2|0 otCt.

A 7|zt HieL 20| HY &L SHO|' R AS|" 52T principal space | £ 0|
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von Mises equivalent strain
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Yield and Flow

When the stress state of a material on the yield surface, the material plastically flows.

* Material (plastic) flow means that there is a certain amount (and type) of (plastic) strain

* This plastic flow occurs instantaneously: it occurs as soon as the stress state of
the material reaches the yield point (locus, surface ... ); As soon as the material
satisfies the yield criterion.

 How, then, does the material flow? In which direction? And what will be its magnitude
along a particular direction?

* The answer is described by so-called the flow theory: theory that describes the flow
behavior of materials.



Yield and Flow

If a unit volume of material is under a load sufficient to cause

plastic deformation (G{}OW), the material responds in terms of

plastic strain increment (dsfjl) — that’s how we deal with
‘instantaneous’ nature found in the material’s responsive behavior
to mechanical stimulus (in this case usually stress/force).

*  Flow stress (of]-low): stress required to make the material continue

plastically deforming
* Therefore, when the stress state of material is on the yield surface, the material

flows (thus dsgl # 0)

* At that instant of material flow, the incremental work done is then:
Yield surface

1
dwP! = of}owdsﬁ

611°% the flow stress may depend on the amount of plastic Th‘e flow stress usgally _ .
increases as strain Strain hardening

strain applied to the material .
increases




Metal flow theory |

S‘ichtal Sﬁ-l K| HEE 2 plastic strain + elastic strain (additive decomposition)

b T ZH0| A 2] flow : Hooke'’s law

— el
doj; = Ejjiq deg ~ de

el _ p—1
i = Ejjig doyg

Ejjk - 4t rank elastic moduli tensor

2N FZH| M 2] flow: (plastic) flow theory

I9P! (o)

6Gi]-

1
dsﬁ = d\

cl)pl is the plastic potential (defined in the stress space)
dA: plastic multiplier (in the incremental form) usually is a constant

dsf;1 incremental plastic strain

9Pl (o)
d0jj

¢P! at the stress state of Oij

: normal direction vector attached to the plastic potential




Metal flow theory ||

I9*' (o)
aO'i]'

cbpl(c) the plastic potential is determined by a certain rule called “flow rule”

adPl(0) . , . a¢Pl(e) . . —
—o. ¢an be also written in the principal stress space such that e with the index i being 1,2, and 3
ij i
: o a¢P! dpP (04,05,
Thus, in the principal stress space, q;c-(-o) becomes %W.
ij i

9P (041,0,,03)
aO'i
observation is that such a direction is normal (perpendicular) to the potential.

actually is a three dimensional direction vector attached to the plastic potential; One very important

Incompressible materials (such as metals) are well described by the associated flow rule, in which the plastic potential is
described by a homogeneous yield function




Metal flow theory with homogeneous function

Then, what is a homogeneous function? What properties should we know?

| Function fis called as a
. homogeneous function of degree n

A homogeneous function (f) of degree n in the space of (x,y) obeys:

f(tx, ty) = t"f(x,y) where tisany arbitrary constant

Euler’s theorem on the Homogeneous function of degree !

|
1
LN of (x,y) of (x,y) B :—> Can be extended to a bigger dimensional
: x 0x ty 0 =nf(xy) ' space

If there is a homogeneous function constructed in the stress space of (gy1, 022, 01>):

0f(011,022,012) + 0f(011,022,012)
90 022
11

0f(011,022,012) 0f(011,022,012)
+ 012 + 012 =n f(011,022,012) :
60'22 60'12 60'12

a homogeneous function f of degree n in the space of (d;1,0,,, 713)

011

If the homogeneous function in the space of () has the degree of 1:

d9f (o)
O'ijF:: f (o)




Metal flow theory |l

I9p*' (o)

Oci]-

We assume ¢p‘ to be a homogeneous yield function of degree one in the stress space (oj;)

From the general form of the flow rule:

pl
dgﬁl = dgag_w) No summation symbols missing do
O'i]'

1 1 1
dePl = @2 205 Pl = 2 207D Pl = gy 207(0)
11 22

do 033

If we multiply o;; on the left and the right hand sides,

pl aq)pl(o-) — .
oxdey, = dAoy o Do not forget the missing summation symbols!
ij
ddP (o
oide?! = dioy q;T() = d2 P!

ij

o: deP! = dwP!

If we use a yield function for HP!, P!
can be treated as an equivalent stress.

In that case,

dA P! = dA 69 = dwP!
[2FA] d) = deca



Metal flow theory Il (normality rule)

ad)pl(o') inci 1

1 In th | f p

d?«ﬁ = dl—a N the principal space o de; = 297 @  ith i=1,2,3 (again no summation)
Oij strain and stress tensors 9o

pl _ 4. pl 4 pl 5 pl
de; =(de7, de; , deg)

Incompressible materials (such as metals) are well described

1
[ def
4 :
02 . : by the associated flow rule, in which the plastic potential is
. time: ¢ . . .
: : described by a yield surface
>0'1 Associated flow rule is sometimes called ‘normality’ rule
:“ / o The term associated is originated from the fact that the
O3 ‘..” principal spaces of the flow stress and plastic strain
., K increment tensors are ‘co-axial’. The basis vectors of each
o> Plastic coordinate system are associated with each other (in other
. words, the two coordinate axes are ‘aligned’).

o ] potential




Associated flow rule and plastic strain ratio

(I)Vm

\/(011 — 022)% + (022 — 033)% + (033 — 611)? + 6(0%, + 053 + 0%3) _
2

If your material follows von Mises yield criterion and and the associated flow rule:

a ¢Vm

AsVm.eq
60-1 1

= deqq €V™€4: yon Mises equivalent strain

In the principal stress space:

\](01 — 03)% + (0, — 03)% + (03 — 07)? = pvm

2

ad)vm
60'1

AgVmeq = dg; Principal space of strain is co-axial to that of stress.



Associated flow rule and plastic strain ratio

p i Principal space of strain is co-axial to that of stress
1

(01 — 02)% + (02 — 03)? + (03 — 09)? — pvm
2
(01-02)?+(02—-03)?*+(03~04)?

1
The above can be expressed as Xz = ¢V™ where X = >

Chain rule: when z = f(y) and y = g(x) and if you want to obtain a_’ you can use below relation:

dz _ 0z 0y
dx  0Jyox
0™  0d¢"™ 0X 1 _% [201 — 20, + 207 — 203] _y ; [201 — 0, — 03] [201 — 0y — 03]
do,  0X do; 2 2 B Gvm 2
ad)vm _ a(l)vm 0X _ 1 _% [202 — 201 + 262 — 263] _ X_% [202 — 01 — 03] _ 1 [202 — 01 — 63]
do,  0X do, 2 2 B 2 ~ ¢pvm 2
a(l)vm _ 1 [203 — 01 — 0'2]
603 B q)vm 2



Associated flow rule and plastic strain ratio

AgVm.eq oo™

— = dg; index i denotes each basis vector (or axis) of the principal space.
1

and the material plastically flows, what is the

100 0 O
If the material’s stress state is 0O 0 O . . .
0 0 incremental form of plastic strain tensor?

0

Assumption: material follows the von Mises yield criterion and the associated flow rule:

vm P vm,eq
de, = devmea 2 = gevmeq L [20170270s| _ de 21001 _ qevmeq Can we obtain deV™®d ?
1 904 $vm 2 100 2
1
dwP! olldsp
devmed —
ovmeq — gvmeq

(01 — 02)% + (03 — 03)% + (03 — 01)?

pl ;.pl 5 _pl
de; , de;, , deg

GV =
2
de, = devm-ed 1 [20‘2—0'1—03] _ dsvmeq [_100] _ _ds"m eq
2 v 2 100 2 2
203—01—0C deVm.ed 1—-100 devmeq
des = devmed [ 3=01— 2] _ [ ] _
¢Vm 100 2 2

_ ﬁdsp]l

ovmeq



Associated flow rule and plastic strain ratio

apvm . . . . .
AgVMmed (b—c = dg; index i denotes each basis vector (or axis) of the principal space.
1

100 © 0] and the material plastically flows, what is the

If the material’s stress state is 0 100 O . . .
0 0 0 incremental form of plastic strain tensor?

Assumption: material follows the von Mises yield criterion and the associated flow rule:

dpvm 1 [20,-0,-0 de’™ed [2x100-100]1  deV™ed
— Aevmeq 29 _ 3. vme 1—02—03| __ _
de; = de"™*4 = de"™* [ 2 ] 100 [ 2 ] -2

doq ¢vm

VM = \/(01 —0,)% + (0, —03)% + (03 — 01)?

2

d€2 — dsvm,eq 1 [202—61—0'3] — dsvm,eq [2X100—100] — dSVm'eq

$vm 100 2 2
ds _ dgvm'eq 20'3 0'1 (e3/) vm €q —-200 dgvm'eq
3™ q)Vm 100 2 |1



€3,

e, o1 0 O

’ g = 0 029 0

. 0 0 0

— 1
fl &2 a5 B 725 Q1 S8 HESIO|AM &0 HAE H|=0| ¢ 12 2811)11 o=
S | UL} Normality rule (associated flow rule)= A2 S Sl|E HA S O] gAigh 4=

U= SHYEN M Q| 0,,/0,, 2] B E Z+ZF von Mises 12|11 TrescaE ME5t0 15t0 2t

1) von Mises = 0|

SHTH=2 2 AFEHOI| A d)VM _ \/(011—02)2+(022)2+(—G1)2

deP! = dxdq’ J2|0deP = dad® " g1 e BEO| M40|B 2, & 0|2 S E 0| H|Qo| A2
11 611 22 dGzz
VM VM _ _
sl S0 2t 907 o 747t 50 g 2Lk 0] 24zt oo Zon-on
0'11 d0'22 2 2

2 2 20'22—0'11 20'22/0'11—1

— Solve following forx: 2 —x=—-4Q2x—-1) > 7x =2 . x =2/7

|I|'E|-A‘|’ SEE _ (20'11—0'22)/ (20'22—0'11) _ 2011022 _ 2-022/011 _ _4

€32
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