Vectors and Matrices operations
required to study
metal plasticity

Youngung Jeong



Nomenclature
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Nomenclature

* In matrix notation, the subscripts (also called as indices) are used to denote the
column and the row of the associated components.

* Say, A;; refers to the component in i-th row (&) and j-th column (2)*.

Ay Agp Ags
d Example: A= A21 AZZ A23
A3y Aszp Aszs

* We preferably use Cartesian coordinates consisting of three basis vectors (often
denoted as e4, €,, €3 or equivalently as i, j, k)’

"(Mnemonic) & A ES FE0H0 22 B 7IRMZ(0), M27H2 (x); . MELM B2 7HZ,
=2 M Z. Row2t columnS column 7| &' ot 7|2 MHA I:|' RN Column._ o

'—HIH X| rowe Q.

*The basis vectors are written in bold-face, implying that they are vectors not scalars.




Why do we study vectors, tensors,

coordinate systems?
Moz 3xtelo|m, AZtet SRR RO HES

Ol A O] &td(anisotropy) 7} = OF, 2t 2FOFC} X 2 O]
o = Q7| I ZO| L. (e.g., Miller index)

oterg 10
scalar HY EZ X 2174 'E':”S'&l AE=71



S E] (vector)

A vector in 2-dimensional space has two independent components.
Say, a vector a has two separate components a = (a4, a,). For example, vector b = (2,3)
In 3D, a vector has three components.

Length (magnitude) of vector

vector a2| Tt #lE{ = Ctg1f Z L}

a a, a, as

= ) )
|a|
\/af+a§+a52, \/a%+a%+a§ \/a%+a§+a§




Ofl &l

Ex1) Ct= Bl E{ 9| length (magnitude)S TtoIA| 2.
a=(1,2,5)

Ex2) Ct= Bl E{ 2| unit vectorS oA 2.
b=(112)



3 B4 (vector) operations

* \Vector addition: addition of vectors a and b can be
expressed as:

either c=a+b or ¢c; =a; +b; withi =1,2,3

- The former notation is called vector notation (using bold-
face)

- The latter notation has many names and is usually called
Einstein notation;

- In order to perform vector addition for each component,
make sure that the associated vectors (tensors) are
referred to the same coordinate system.



HIE] (vector)

* Vector multiplication with scalar
ca = (caq, ca,, ca;) =c(aq,a,,as)

* A vector decomposed into three vectors alighed
with basis vectors of given coordinates:

a = alel + azez + a3e3
Some people use i, j, k to denote the basis vectors
such that

a=ai+a,j+ aszk






H7]

_
®)

]

—

-
(@}

SIO 2 H

—_
o

dz2
H A O #740f RLO{0F

MBEO

Vector operations and coordinates
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The scalar product

Geometric representation of scalar product
of two vectors x and y

\

=7

= |x||y| cos 6

cos @ is an even function, so that

= |xllyl cos(=6)

| x|

=x = (x-x)1/2

= |yllx| cos(8) =y-x

FYl, e; - €; = §;; (Kronecker delta)

6;j =1(@fi=7)6;;=0(0#))

Algebraic representation of scalar
product of two vectors x and y

X = xlel —+ xzez —+ X3e3 = inei
i

Yy =Xx1€1 + Xx,€, + Xz€3 = Z)’iei

x.y:@clel) (Zy,e,)
22 x;yje; - ej = ZZ xiy;6ij
— Z Z Xy, 8i; = Z Xii

i



2 B4 (vector) operations

* Dot product aka inner dot product (L A):
d=a-b=b-a ord=Y?a;b; - (Einstein):d = a;b;

e Alternative form:
a-b = |al||b| cosb

0 denotes the angle between the two vectors (a and b).
a-b=(ayi+a,j+ayk)-(byi+b,j+bk)

where i, j, k are unit vectors along the axes x,y,z, respectively.

* Inner product of different basis vector leads in zero, while that of the same basis vectors
leadtol: i-j=0 andi-i=1

— ;- e; = §;; (Kronecker delta)
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Einstein summation convention

rh
o

« Albert EinsteinO| Hl B 2} HIM S 2| E2[2F= 0| &2t 12| O

=l E MHM (A9 S| 8 A ut= Fatoh X{O

ZHAFNCEH B E{ Lt HIA 7} inner dot, cross product, & & 2| operations
ZOSHHA SO USA|Of| BEEA] SHE subscriptZt =24 LEEFLEL,
HtCH 2 subscript/t = HA BE5 | O] LIEFLEEH ‘RO =X| o=
ZO|C} HEfA], AL F702| & YTt subscriptZf LIEFLEEH ZHES]
summation 7|2 & U0 =Lt HZUCEH O & =8 x;y, 2 €2
ESO0| A0 LIQH O| W2 2 LS SHX| (A2 Yxy; 2
O|0|otCh= AFAEO|CH (O] n2 =22 0| 5=l S| XH& O[T},
FASHA|, BHF 49| subscript”Zt Bt =ICHH, 570 2| summation
7|27t ‘d=EFEIC




Examples of Einstein summation

n
*X = X;€; = inei = X1€1 + X5, + -+ X, €,
i

"X Y=xYi0i = XiYi = XY; = XaY1 T XY o XY

X e1:x1
*X-€ =X€ € =xj6ij:xi{x°e2:x2
x‘e3:x3

The last equation defines the components of vector.

The same can be referred to as ‘projection’ of x on
the e; axis. (x2E 2| e, 2 22| LjA)




O] %! Ct= expression= Einstein summation

b=x+C-y
C-y=WHO|H ¢7t 2" order tensor (3x3 matrix) O| 0 y= HE{ O|C}, }2tA O Z1t=

Cr1 Cyp Cy3 = |C21Y2 + C2y2 + Cr3Y3

[Cn 12 C13] [ ] [6113’1 + C12y, + C13Y3
C31 C3 (33 C31Y1 + C32y, + C33Y3

= Z C25yj

3 - - 3 J
Z C1jYj Z C1Yj
J J
X1 3 by X1 3 b; = x; + Z Cijy; fori=123
X3 j b3 X3 J
3 3
Z C3jy; z C35y; | = b =x+Cyy; |
| i | |




Cartesian coordinate system

* We confine our study to the cases using an orthonormal
basis — three basis vectors are perpendicular each other, all
of which has the length of unity.

* Now, we denote these three orthonormal basis vectors as
€.,€- and €.

X3

Right-handed Cartesian
(orthonormal) coordinate system.

combination of the three basis vectors such that
X = X1€1 + X2€- + x3e3

//\%\ A vector x then can be expressed a linear
e -



HI B (vector) operations

* Dyadic product (a.k.a. outer product):
a® b = (ayi+ayj+ak)® (byi+ byj+ b,k)

where i, j, k are unit vectors along the axes x,y,z, respectively.

a® b =a,b,(i® D)+ ab,(i® )+ a.b,(i @ k)
+a,b,(j® i) +a,b,(j&jJ) +a,b,(j ® k)
t+a,b,(k® i)+ a,b,(k® j) + a,b,(kQ k)

Also equivalently, b b b
ax X ax y ax VA

a®@b=|ayb, ayb, ayb,
a,b, a,b, a,b,

If n5 and b® are slip system s (unit) plane normal and (unit) slip direction vectors,
ns @ bS corresponds to Schmid tensor such that MS = ns @ b° or Ml-sj =n; Q bjs



Schmid tensor and resolved shear stress

. s — (LLD) s — (1L0-1)
= a2 = e )
Say, the crystal is subjected to stress t%nsc(n)r o1(°)
o= [0 0 O]
0 0 O

The resolved shear stress (RSS) amounts to
5S=0-n°-b5=0:M°= O'UMLS)

5 o) li) el
s=(lo o o|l-—=|1|]-—=]|o0
' o o ol V3l1l/ V2|

-2 o]

Recall the Schmid law: 7° = ¢ cos ¢ cos A

** Caution, direct use of miller index for crystal plane normal and direction should be careful.
Crystal coordinate system of cubic (FCC, BCC) are equivalent to Cartesian. Less symmetric
Structures (such as triclinic) would require change of the miller indices to relevant components in Cartesian coordinates.



Pressure independence of slip

s (LD s _ (1,0~
a1 2P =100

Say, the crystal is subjected to stress tensor of

1 0 O 2 0 0 2 0 0
c=1|0 0 Of,e=|0 1 OL,o=|0 2 O
0 0 O 0 0 1 0 0 2

Calculate the resolved shear stress for each stress tensor above, and
discuss what you observed.



|[dentity matrix

[ ]

Py

1
S O P
S~ O
_ O O

* In the tensor notation, one would use the
Kronecker delta denoted as 0;;



Transpose

3 4 6
cA=|-3 2 5
1 -1 -4
3 -3 1
cAT=[4 2 -1
6 5 —4

* In tensor notation, Al-Tj = Aj;



Matrix addition and multiplication

* Addition
e C=A+B
¢ CU = Al] + BU
* Multiplication (dot products)
C=A'B
* Cij = Ay By;j
* Multiplication is not commutative
e A-B+B-A

* Double dot products

 d = A: B (denote d is a scalar quantity thus is not denoted in
bold-face)

e d = AUBU



Change basis (not necessarily orthonormal);
related with deformation gradient tensor

pnev = 4 . pold lnew

A vo

Yj

A has many different names: change-of-basis matrix. It changes from old basis vectors

to new basis vectors.

Say, below matrix

e = Al]e]

changes from basis vectors eq, e,, €3 to €,, €,, €5

Q) How to obtain 4;;?
A) AU = éi . ej

Derivation:

1) Use éi = Al]ej
2) Apply dot product with e;

https://youtu.be/P2LTAUO1TdA
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Rotation (transformation) of the coordinate system

Relationship between the components of a unit vector expressed with respect to
two different Cartesian bases with the same origin (not necessarily orthonormal);

Two cartesian coordinates (K and
K") with two separate sets of basis
vectors (e; and e;) and a vector x

L

Any vector X can be resolved into components with
respect to either the K or the K’ system.

x=(x-¢)e; = xe
If we take X = e; (a certain basis vector of K')
A 4 o . . — .. .
e; = (e - ¢))e; = ajje;

The nine terms a;; (for each of three basis vectors;
i =1,i = 2,and i = 3) are directional cosines of the
angles between the six axes:

a1 A1 aAqg3
R = (aij) = |Ay1 Ay A3
31 Azp d3z3

R is known as the transformation matrix (or rotation
matrix) in three dimension.




Rotation (transformation) of the coordinate system

I — . . . r
€; = a;;€;  Switchingj - k e; = a;xex
Earlier, we defined: a;; = e;-€; Anda;je; =e;-¢e;-e;

)

aij ej = e§|e| — aijej = e;
=€ € =age, e =ayb;  [a] =[b]?
/

If we defined: bl] =€ ej

Any vector X may be expressed in the K system as

or as in the K’ system using primed basis such as
Y Y

They are the same vector so one can equate
X = Xl,e: = X]e]
One could replace e; with a;;e;

q 0 ! —
Two cartesian coordinates (K and XiQij€; = X;€; Xi = a::x!
q . ] JL7 1
K") with two separate sets of basis so that
: ! =g LA PSS L Tr 1T
vectors (e; and e;) and a vector X Xj = X;Q;; [x]] — [xl.aij] xXj = [aij] [x/]

Or equivalently, swapping the indices i and j gives:

. /
X = al-jxj



Inverse transformation?

Earlier, we defined:

_ —e. (e -e') =(e. .- e = a..e’
e =e Xl = el(e] e]) = (e; e])e] aij€; aj; = €; - €
_ !/
bij—ei°ej

_ I __ I !
AkjXj = Qjbjx; = Opx; = X . :
Earlier, we defined:
h— , b— ] ’ h— - n
aij—ei-ej—ej el-—b]l
In summary we have:

X = x’e’ = X:e:
L A If the inner dot product of a

I} /
e. =qa;:e; e: = q;:e: .
3 ij<j L Ly and b matrices:
X; = Q;jX;, Xi = QX — (e !
A =6 ] aixbyj = (e; - ek)(ek ' ej)
AikAjx = AgiAgj = Ojj !

=e; - (ex-eg) - €
=ei-e]'-=5l-j



Scalar product is invariant under
orthogonal transformations

/ A B A .
XY =XY =0iX0ikYr = ;0 XYk

= OjkXjYr = XjYj = XY

T
aijQik = (a;;) ay = bjay = S



Two dimensional case

X5 Xo https://en.wikipedia.org/wiki/List of trigonometric identities

Shift by one quarter period
sin(f + ) = +tcos
cos(f + ) = Fsinb
tan(s  3) = il
csc(f + ) = L secH
sec(ff = ) = Fesch

a;; = (e;-e)), fori,j =1,2 cot(d + 1) = (lxq)fcé:)f;

3 cos ¢ cos(90° — ¢)
[aif] - [cos(90° + @) cos ¢


https://en.wikipedia.org/wiki/List_of_trigonometric_identities

Physical theories must be invariant to
the choice of coordinate system

If we fix our attention on a physical vector (e.g. velocity) and then rotate the coordinate
system (K — K'), the vector will have different numerical components in the rotated
coordinate system (as evident in the coordinate transformation rule we just discussed
earlier). So we are led to realize that a vector is more than an ordered triple. Rather, it is
many sets of ordered triples, which are related in a definite way. One still specifies a
vector by giving three ordered numbers (components), but these three numbers are
distinguished from an arbitrary collection of three numbers by including the law of
coordinate transformation under rotation of the coordinate frame as part of the

definition.

Thus, one physical vector may be represented by infinitely many sets of ordered triples.
The particular triple depends on the chosen coordinate system of the observer.

This is important because physical laws (and results) must be the same regardless of
coordinate system, that is, regardless of the orientation of observer’s coordinate system.



Physical laws and coordinate system

* The importance of thinking of these quantities in
terms of their transformation properties lies in the
requirement that physical theories must be invariant
under the change of the coordinate system.

* Physical laws should not be affected by the choice of
a coordinate system.

* We’ll examine this using an example in what follows.



Newton’s second law

Algebraic representation Vg x| Gravity
F = - K’
= ma - F; =ma; > F; = my;
—mg
. da VO
° o0 a _ —-—
R — . — i dt
F; = mv; = mx; y 6
dx; . K
AT d ¥
[/
a; =v; = % = % =X Vo =Muzzle velocity

Let’s assume acceleration X;
is function of time, so that
x = X;(t)

Furthermore, if we assume the mass is
constant (which is quite usual), the
second law is equation with the location
x; and its derivatives as variable —do not
forget another variable time (t).



Newton’s second law
F;(t) = mX;(t)

Let’s use K coordinate system

1. Initial condition in terms of
location (x;) and velocity (x;)-
x;(0) =0, with i = 1,2 Vo =Muzzle velocity
%1(0) = vycosb x;(0) means x;(t = 0)
%5(0) = vy sinf

t

2. Force given by gravity is constant (gravity field): x,(t) = f 1o c0s 8 dt = vot cos 6
0

F1 = mjél = O, FZ = —mg = ij.z

3. Estimate x;(t) =?

t
1
x,(t) = f (vosinf — gt)dt = vyt sinf — Egt2
0

tdxi t.
x;(t) = x;(0) +f —dt = x;(0) +J x;dt
o dt 0

tdx, t
X (t) = x;(0) +J d—tldt %, (t) = %, (t =0) +j ¥,dt = vycosf + 0
0 0

t t

X,dt = vysinf +j —gdt = vysinf — gt
0

% (8) = 1,(t = o>+j

0



Newton’s second law
F;(t) = mi;(t)

Let’s use K' coordinate system ¥

1. Initial condition in terms of
location (x;) and velocity (x;)-
x;(t=0) =0, withi = 1,2
x1(0) = vy
%5(0) =0

g Gravity
Y2 X]
% l
—mg
Yo
()
K
d X1
[/}

Vo =Muzzle velocity

2. Force given by gravity is constant (gravity field):
F, =mX; = —mgsin@, F, = —mg cos 0 = mix,

3. Estimate x;(t) =?

t
x,(t) = j (vg — gt sinB)dt
0

I
=v0t—§gt sin 6

tdxi t
4 =5+ | Fhde=x 0+ [ 5
t ° 0

Qéi(t) = XL(O) +J 5C-idt
0
t

t
1
x,(t) = f —gtcosfdt = —Egtz cos 6
0

t
5c'1dt=v0—j gsinfdt =v,— gtsinf

0
t

X,dt = O—j gcosBdt = —gtcosb
0

%1(8) = %,(0) + j

0

% () = 1,(0) + j

0

t




Graphing the two results.

Plot the result with theta=45 degree

At t=0
at t=1s
*  Which of the frame was the easy one?
at t=10s
e Describe why we’d want to chose a
at t=100s frame that gives easy calculation?

Plot the result with theta=90 degree
At t=0

at t=1s

at t=10s

at t=100s



250 T 250 1
I I
0 T R T e e = 0 1 .:.é':;f’; _______
—250 - 1250 A
> _500- 1500 1
—750 - 1750 A
—— Krframe O Krframe
—-1000 { —— K frame —1000 { —— K frame
0 500 1000 1500 0 500 1000 1500

. 400 - — Kr frame 400 - I
1 O Krframe . — Kframe
W —— Kframe % 200 1 200 1 &
0 250 500 750 1000 O [ P 08—
B Krframe 0 250 500 750 1000 O 250

X

400 - Kifame 400 - O Krframe
UL —— K frame

I 2001 f}
04 b———— - 08 oL

0 250 500 750 1000 250 500 750 1000

X



Summary

* Nomenclature
* What vectorial quantity is required?

» Vector operations (addition, scalar multiplication, inner
dot)

e Use the same coordinate system for vector operations
e Dyadic operation and Schmid tensor
 |dentity matrix (Kronecker delta)
* Transpose operation
* Matrix addition and multiplication
* Changes of basis



Reference

https://www.continuummechanics.org



