
Vectors and Matrices operations
required to study 
metal plasticity

Youngung Jeong



Nomenclature

• Rule(1) 굵은글씨체(bold face)로쓰여진알파벳기호 (가령 𝒃) 

는그기호가가르키는 ‘물리량’이벡터임을의미한다.

• Rule(2) 벡터𝒃를구성성분을사용하여표기할수도있다. 𝒃 =

𝑏!, 𝑏", 𝑏# .각구성성분(𝑏$ with 𝑖 = 1,2,3)이굵은글씨체가

아닌글씨체로쓰여져있음을확인하라. (왜?)

• Rule(3) 굵은글씨체로쓰인대문자 𝑨는 2nd order tensor (혹은

3x3 matrix)를나타내는데다음과같이사용될수있다.



Nomenclature
• In matrix notation, the subscripts (also called as indices) are used to denote the 

column and the row of the associated components.

• Say, 𝐴!" refers to the component in 𝑖-th row (행) and 𝑗-th column (렬) +.

• Example:  𝑨 =
𝐴## 𝐴#$ 𝐴#%
𝐴$# 𝐴$$ 𝐴$%
𝐴%# 𝐴%$ 𝐴%%

• We preferably use Cartesian coordinates consisting of three basis vectors (often 
denoted as 𝐞#, 𝐞$, 𝐞% or equivalently as 𝒊, 𝒋, 𝒌)*

+(Mnemonic) 행과열을구분하여외우는팁: 가로세로(o), 세로가로(x); 행렬. 따라서행은가로,
열은세로. Row와 column중 column은 ‘기둥’을뜻하고기둥은세워져있다. 따라서 Column은행,
나머지 row는열.
*The basis vectors are written in bold-face, implying that they are vectors not scalars.



Why do we study vectors, tensors, 
coordinate systems?

• 재료는근원적으로 3차원이며, 스칼라물리량으로재료의거동을

설명하기에부족하다.

• 재료의거동에서이방성(anisotropy)가높아, 방향마다재료의

거동이달라질수있기때문이다. (e.g., Miller index)

• 스칼라만을활용한물리모형들의활용도가매우제한적이며,

재료가가진이방성을설명하거나 3차원공간에서의재료의역학

거동을설명할수없다. (한방향으로의길이만가진 1D 재료는없다! 

따라서예를들어 scalar 변형률로재료구성방정식사용불가)



벡터 (vector)
• A vector in 2-dimensional space has two independent components.

• Say, a vector 𝒂 has two separate components 𝒂 = 𝑎!, 𝑎" . For example, vector 𝒃 = 2,3

• In 3D, a vector has three components.

• Length (magnitude) of vector

𝒂 = 𝑎!" + 𝑎"" + 𝑎#" = *
$

#

𝑎$"

• vector 𝒂의단위벡터는다음과같다.

𝒂
𝒂 =

𝑎!

𝑎!" + 𝑎"" + 𝑎#"
,

𝑎"

𝑎!" + 𝑎"" + 𝑎#"
,

𝑎#

𝑎!" + 𝑎"" + 𝑎#"



예제)

Ex1) 다음벡터의 length (magnitude)를구하시오.
𝒂 = 1,2,5

Ex2) 다음벡터의 unit vector를구하시오.
𝒃 = (1,1,2)



벡터 (vector) operations
• Vector addition: addition of vectors 𝒂 and 𝒃 can be 

expressed as:
either   𝒄 = 𝒂 + 𝒃 or         𝑐+ = 𝑎+ + 𝑏+ with 𝑖 = 1,2,3

- The former notation is called vector notation (using bold-
face)

- The latter notation has many names and is usually called 
Einstein notation; 

- In order to perform vector addition for each component, 
make sure that the associated vectors (tensors) are 
referred to the same coordinate system.



벡터 (vector)

• Vector multiplication with scalar
𝑐𝒂 = 𝑐𝑎,, 𝑐𝑎-, 𝑐𝑎. = 𝑐 𝑎,, 𝑎-, 𝑎.

• A vector decomposed into three vectors aligned 
with basis vectors of given coordinates:

𝒂 = 𝑎,𝐞, + 𝑎-𝐞- + 𝑎.𝐞.
Some people use 𝒊, 𝒋, 𝒌 to denote the basis vectors 
such that

𝒂 = 𝑎,𝒊 + 𝑎-𝒋 + 𝑎.𝒌



예제)

Ex1) 다음두벡터합을구하시오.
𝒂 = 1,2,5 𝒃 = (2,−2,0)

Ex2) 다음두벡터의합에해당하는벡터의 unit 
vector를구하시오.

𝒂 = −1,3,0 𝒃 = (2,−2,1)



Vector operations and coordinates
• 벡터의구성성분은임의로설정된좌표계에의해특정된다. 합하는두
벡터에사용하는좌표계가다르다면, 같은물리량 (예를들어힘; force)을
표현하는벡터라도다른좌표값을가진다.

• 힘벡터의합을구성성분의합으로표현하기위해서는반드시두벡터의
구성성분이같은좌표계에표현되어있어야한다.

• 합뿐만아니라다른벡터 operations들을행하기에앞서반드시구성성분이
같은좌표계로표현되어있어야한다.

• Operation 결과가 vector (혹은 tensor) quantity 일때, 구성성분들은선택된
좌표계에참조된다.

𝒙

𝒚

'𝒙
'𝒚

𝒇

𝒈

각각특정물리량을표현하는 𝒈와 𝒇의합은어떠한좌표계를
사용하던그 ‘물리적’ 결과가동일해야한다. 



The scalar product

Geometric representation of scalar product 
of two vectors  𝒙 and 𝒚

Algebraic representation of scalar 
product of two vectors  𝒙 and 𝒚

𝒙 ⋅ 𝒚 = 𝒙 𝒚 cos 𝜃

cos 𝜃 is an even function, so that

𝒙 ⋅ 𝒚 = 𝒙 𝒚 cos −𝜃

𝒙 ≡ 𝑥 = 𝒙 ⋅ 𝒙 !/#

FYI, 𝐞$ ⋅ 𝐞% = 𝛿$% (Kronecker delta)

𝛿$% = 1 𝑖𝑓 𝑖 = 𝑗 ; 𝛿$% = 0 (𝑖 ≠ 𝑗)

𝒙 = 𝑥!𝐞! + 𝑥#𝐞# + 𝑥&𝐞& =B
$

𝑥$𝐞$

𝒚 = 𝑥!𝐞! + 𝑥#𝐞# + 𝑥&𝐞& =B
$

𝑦$𝐞'

𝒙 ⋅ 𝒚 = B
$

𝑥$𝐞$ ⋅ B
$

𝑦%𝐞%

=B
$

B
%

𝑥$𝑦%𝐞$ ⋅ 𝐞% =B
$

B
%

𝑥$𝑦%𝛿$%

=B
$

B
%

𝑥$𝑦%𝛿$% =B
$

𝑥$𝑦$

= 𝒚 𝒙 cos 𝜃 = 𝒚 ⋅ 𝒙



벡터 (vector) operations
• Dot product aka inner dot product (내적):

𝑑 = 𝒂 ⋅ 𝒃 = 𝒃 ⋅ 𝒂 or 𝑑 = ∑$& 𝑎$𝑏$ → Einstein : 𝑑 = 𝑎$𝑏$
• Alternative form:

𝒂 ⋅ 𝒃 = 𝒂 𝒃 cos𝜃
𝜽 denotes the angle between the two vectors (𝒂 and 𝒃).

𝒂 ⋅ 𝒃 = 𝑎(𝒊 + 𝑎)𝒋 + 𝑎*𝒌 ⋅ 𝑏(𝒊 + 𝑏)𝒋 + 𝑏*𝒌
where 𝒊, 𝒋, 𝒌 are unit vectors along the axes x,y,z, respectively.

• Inner product of different basis vector leads in zero, while that of the same basis vectors 
lead to 1:    𝒊 ⋅ 𝒋 = 0 and 𝒊 ⋅ 𝒊 = 1

Either way, the dot product
amounts to ~42.27

→ 𝐞$ ⋅ 𝐞% = 𝛿$% (Kronecker delta)



예제)

•다음은 Miller index로나타낸 BCC 결정구조내의
면과방향이다. 두방향사이의끼인각은?

𝒏 = 1,1,0
𝒃 = [1, =1, 0]

•다음결정면 𝒏과방향 𝒃으로이루어진 slip
system이 FCC 결정내존재할까 ?

𝒏 = 1, =1, 1
𝒃 = [1, =1, 0]



Einstein summation convention

• Albert Einstein이벡터와텐서등의물리량을이용하여그의이론을
논문으로쓰면서 (그의물리법칙과는무관한) 재미있는사실을하나
관찰했다. 벡터나텐서가 inner dot, cross product, 등등의 operations 
참여하면서 ‘덧셈’이있을시에반드시해당 subscript가두번씩나타나고,
반대로 subscript가두번씩반복되어나타나면 ‘덧셈’이존재한다는
것이다. 따라서, 언제나두개의동일한 subscript가나타나면간단히
summation 기호를없애도된다고생각했다. 예를들면 𝑥!𝑦!와같은
표현이수식에나오면이것은따로말을하지않더라도 ∑!& 𝑥!𝑦!을
의미한다는사실이다 (이때 n은물리량이표혀된공간의차원이다).
유사하게, 만약두쌍의 subscript가반복된다면, 두개의 summation 
기호가생략된다.



Examples of Einstein summation

• 𝒙 = 𝑥+𝐞+

• 𝒙 ⋅ 𝒚

• 𝒙 ⋅ 𝐞+

The last equation defines the components of vector. 
The same can be referred to as ‘projection’ of 𝒙 on 
the 𝐞+ axis. (𝒙벡터의 𝐞+축으로의내적)

=C
+

2

𝑥+𝐞+ = 𝑥,𝐞, + 𝑥-𝐞- +⋯+ 𝑥2𝐞2

= 𝑥+𝑦3𝛿+3 = 𝑥+𝑦+ = 𝑥3𝑦3

= 𝑥3𝐞3 ⋅ 𝐞+ = 𝑥3𝛿+3 = 𝑥+
𝒙 ⋅ 𝐞, = 𝑥,
𝒙 ⋅ 𝐞- = 𝑥-
𝒙 ⋅ 𝐞. = 𝑥.

= 𝑥,𝑦, + 𝑥-𝑦- +⋯𝑥2𝑦2



Ex)
• 3차원공간에서의물리량으로이루어진다음 expression을 Einstein	summation	
convention을사용하여나타내시오.

𝒃 = 𝒙 + 𝑪 ⋅ 𝒚
𝑪 ⋅ 𝒚은내적이며 𝑪가 2nd order tensor (3x3 matrix) 이고 𝒚는벡터이다. 따라서그결과는

𝐶!! 𝐶!" 𝐶!#
𝐶"! 𝐶"" 𝐶"#
𝐶#! 𝐶#" 𝐶##

𝑦!
𝑦"
𝑦#

=
𝐶!!𝑦! + 𝐶!"𝑦" + 𝐶!#𝑦#
𝐶"!𝑦" + 𝐶""𝑦" + 𝐶"#𝑦#
𝐶#!𝑦! + 𝐶#"𝑦" + 𝐶##𝑦#

=

*
'

#

𝐶!'𝑦'

*
'

#

𝐶"'𝑦'

*
'

#

𝐶#'𝑦'

𝒃 =
𝑥!
𝑥#
𝑥&

+

B
%

&

𝐶!%𝑦%

B
%

&

𝐶#%𝑦%

B
%

&

𝐶&%𝑦%

→
𝑏!
𝑏#
𝑏&

=
𝑥!
𝑥#
𝑥&

+

B
%

&

𝐶!%𝑦%

B
%

&

𝐶#%𝑦%

B
%

&

𝐶&%𝑦%

𝑏$ = 𝑥$ +B
%

&

𝐶$%𝑦% 𝑓𝑜𝑟 𝑖 = 1,2,3

→ 𝑏$ = 𝑥$ + 𝐶$%𝑦%



Cartesian coordinate system

• We confine our study to the cases using an orthonormal
basis – three basis vectors are perpendicular each other, all 
of which has the length of unity.
• Now, we denote these three orthonormal basis vectors as 
𝐞!, 𝐞" and 𝐞#.

Right-handed Cartesian 
(orthonormal) coordinate system.

A vector 𝒙 then can be expressed a linear 
combination of the three basis vectors such that

𝒙 = 𝑥!𝐞! + 𝑥"𝐞" + 𝑥#𝐞#



벡터 (vector) operations
• Dyadic product (a.k.a. outer product):

𝒂⊗ 𝒃 = 𝑎(𝒊 + 𝑎)𝒋 + 𝑎*𝒌 ⊗ 𝑏(𝒊 + 𝑏)𝒋 + 𝑏*𝒌
where 𝒊, 𝒋, 𝒌 are unit vectors along the axes x,y,z, respectively.

𝒂⊗ 𝒃 = 𝑎(𝑏( 𝒊 ⊗ 𝒊 + 𝑎(𝑏) 𝒊 ⊗ 𝒋 + 𝑎(𝑏* 𝒊 ⊗ 𝒌
+𝑎)𝑏( 𝒋 ⊗ 𝒊 + 𝑎)𝑏) 𝒋 ⊗ 𝒋 + 𝑎)𝑏* 𝒋 ⊗ 𝒌
+𝑎*𝑏( 𝒌⊗ 𝒊 + 𝑎*𝑏) 𝒌⊗ 𝒋 + 𝑎*𝑏*(𝒌⊗ 𝒌)

Also equivalently,

𝒂⊗ 𝒃 =
𝑎(𝑏( 𝑎(𝑏) 𝑎(𝑏*
𝑎)𝑏( 𝑎)𝑏) 𝑎)𝑏*
𝑎*𝑏( 𝑎*𝑏) 𝑎*𝑏*

If 𝒏+ and 𝒃+ are slip system s (unit) plane normal and (unit) slip direction vectors,
𝒏+ ⊗𝒃+ corresponds to Schmid tensor such that 𝑴+ = 𝒏+ ⊗𝒃+ or 𝑴$'

+ = 𝒏$+ ⊗𝒃'+



Schmid tensor and resolved shear stress

• 𝒏! = ",","
",","

and 𝒃! = ",$,%"
",$,%"

Say, the crystal is subjected to stress tensor of

𝝈 =
1 0 0
0 0 0
0 0 0

The resolved shear stress (RSS) amounts to
𝜏! = 𝝈 ⋅ 𝒏! ⋅ 𝒃! = 𝝈:𝑴! = 𝜎&'𝑀&'

!

𝜏! =
1 0 0
0 0 0
0 0 0

⋅
1
3

1
1
1

⋅
1
2

1
0
−1

=
1
6

1
0
0

⋅
1
0
−1

** Caution, direct use of miller index for crystal plane normal and direction should be careful.
Crystal coordinate system of cubic (FCC, BCC) are equivalent to Cartesian. Less symmetric
Structures (such as triclinic) would require change of the miller indices to relevant components in Cartesian coordinates.

Recall the Schmid law: 𝜏+ = 𝜎 cos𝜙 cos 𝜆



Pressure independence of slip
• 𝒏' = #,#,#

#,#,#
and 𝒃' = #,),*#

#,),*#

Say, the crystal is subjected to stress tensor of

𝝈 =
1 0 0
0 0 0
0 0 0

, 𝝈 =
2 0 0
0 1 0
0 0 1

, 𝝈 =
2 0 0
0 2 0
0 0 2

Calculate the resolved shear stress for each stress tensor above, and 
discuss what you observed.



Identity matrix

• 𝑰 =
1 0 0
0 1 0
0 0 1

• In the tensor notation, one would use the 
Kronecker delta denoted as 𝛿+3
𝛿+3 = 1 if 𝑖 = 𝑗
𝛿+3 = 0 if 𝑖 ≠ 𝑗



Transpose

• 𝑨 =
3 4 6
−3 2 5
1 −1 −4

• 𝑨: =
3 −3 1
4 2 −1
6 5 −4

• In tensor notation, 𝐴+3: = 𝐴3+



Matrix addition and multiplication

• Addition
• 𝑪 = 𝑨 + 𝑩
• 𝐶01 = 𝐴01 + 𝐵01

• Multiplication (dot products)
• 𝑪 = 𝑨 ⋅ 𝑩
• 𝐶01 = 𝐴02𝐵21
• Multiplication is not commutative

• 𝑨 ⋅ 𝑩 ≠ 𝑩 ⋅ 𝑨
• Double dot products

• 𝑑 = 𝑨:𝑩 (denote 𝑑 is a scalar quantity thus is not denoted in 
bold-face)

• 𝑑 = 𝐴01𝐵01



Change basis (not necessarily orthonormal);
related with deformation gradient tensor

𝒗,-. = 𝑨 ⋅ 𝒗/01

𝑨 has	many	different	names: change-of-basis	matrix.	It	changes	from	old	basis	vectors
to	new	basis	vectors.

𝑣$,-. = 𝐴$%𝑣%/01

https://youtu.be/P2LTAUO1TdA

Say,	below	matrix
ue$ = 𝐴$%e%

changes	from	basis	vectors	𝐞!, 𝐞#, 𝐞& to	u𝐞!, u𝐞#, u𝐞&

Left	change	in	basis	gives
𝐴!" =

1 −2
2 3

Check:

𝑨 ⋅ 𝐞# =
1 −2
2 3

1
0 = 1

2 = @𝐞#

𝑨 ⋅ 𝐞$ =
1 −2
2 3

0
1 = −2

3 = @𝐞$

Q) How to obtain 𝐴$%?
A) 𝐴$% = u𝐞$ ⋅ 𝐞%

Derivation:
1) Use ue$ = 𝐴$%e%
2)	Apply	dot	product		with	𝐞2



Rotation (transformation) of the coordinate system
Relationship between the components of a unit vector expressed with respect to 
two different Cartesian bases with the same origin (not necessarily orthonormal);

Two cartesian coordinates (𝐾 and 
𝐾′) with two separate sets of basis 
vectors (𝐞$ and 𝐞$3) and a vector 𝐱

Any vector 𝐱 can be resolved into components with 
respect to either the 𝐾 or the 𝐾3 system.

𝐱 = 𝐱 ⋅ 𝐞% 𝐞% = 𝑥%𝐞%

𝐞$3 = 𝐞$3 ⋅ 𝐞% 𝐞% ≡ 𝑎$%𝐞%

If we take 𝐱 = 𝐞$3 (a certain basis vector of 𝐾′)

The nine terms 𝑎$% (for each of three basis vectors; 
𝑖 = 1, 𝑖 = 2, and 𝑖 = 3) are directional cosines of the 
angles between the six axes:

𝑹 ≡ 𝑎$% ≡
𝑎!!
𝑎#!
𝑎&!

𝑎!#
𝑎##
𝑎&#

𝑎!&
𝑎#&
𝑎&&

𝑹 is known as the transformation matrix (or rotation 
matrix) in three dimension.



Rotation (transformation) of the coordinate system

Two cartesian coordinates (𝐾 and 
𝐾′) with two separate sets of basis 
vectors (𝐞$ and 𝐞$3) and a vector 𝐱

𝛿$% = 𝐞$3 ⋅ 𝐞%3

Any vector 𝐱 may be expressed in the 𝐾 system as
𝐱 = 𝑥%𝐞%

or as in the 𝐾′ system using primed basis such as 
𝐱 = 𝑥$3𝐞$3

They are the same vector so one can equate 
𝐱 = 𝑥$3𝐞$3 = 𝑥%𝐞%

One could replace 𝐞$3 with 𝑎$%𝐞%
𝑥$3𝑎$%𝐞% = 𝑥%𝐞%

so that

Or equivalently, swapping the indices 𝑖 and 𝑗 gives:
𝑥$ = 𝑎$%𝑥%3

𝐞$3 ≡ 𝑎$%𝐞% 𝐞$3 ≡ 𝑎$4𝐞4Switching 𝑗 → 𝑘

= 𝑎$4𝐞4 ⋅ 𝐞%3
Earlier,	we	defined:	𝑎$% = 𝐞$3 ⋅ 𝐞%

= 𝑎$4𝑏4%
If	we	defined:	𝑏$% = 𝐞$ ⋅ 𝐞%3

And	𝑎$%𝐞% = 𝐞$3 ⋅ 𝐞% ⋅ 𝐞% ∴ 𝑎$% 𝐞% = 𝐞$3 𝐞 → 𝑎$%𝐞% = 𝐞$3

𝑎 = 𝑏 5!

𝑥%
6 = 𝑥$3𝑎$%

6𝑥% = 𝑥$3𝑎$% 𝑥% = 𝑎$%
6 𝑥$3 6

𝑥% = 𝑎%$𝑥$3



Inverse transformation?

𝐞$

𝑎4%𝑥%

In	summary	we	have:
𝐱 = 𝑥$3𝐞$3 = 𝑥%𝐞%

𝐞$3 = 𝑎$%𝐞% , 𝐞$ = 𝑎%$𝐞%3

𝑥$3 = 𝑎$%𝑥% , 𝑥$ = 𝑎%$𝑥%3

𝑎$4𝑎%4 = 𝑎4$𝑎4% = 𝛿$%

Earlier,	we	defined:	
𝑎$% = 𝐞$3 ⋅ 𝐞%
𝑏$% = 𝐞$ ⋅ 𝐞%3

= 𝐞$×1 = 𝐞$ 𝐞%3 ⋅ 𝐞%3 = 𝐞$ ⋅ 𝐞%3 𝐞%3 = 𝑎$%𝐞%3

= 𝑎4%𝑏%0𝑥03 = 𝛿40𝑥03 = 𝑥43
Earlier,	we	defined:	
𝑎$% = 𝐞$3 ⋅ 𝐞% = 𝐞% ⋅ 𝐞$3 = 𝑏%$

If	the	inner	dot	product	of	𝑎
and	𝑏 matrices:
𝑎$4𝑏4% = 𝐞$3 ⋅ 𝐞4 𝐞4 ⋅ 𝐞%3

= 𝐞$3 ⋅ 𝐞4 ⋅ 𝐞4 ⋅ 𝐞%3

= 𝐞$3 ⋅ 𝐞%3 = 𝛿$%



Scalar product is invariant under 
orthogonal transformations

𝒙; ⋅ 𝒚; = 𝑥+;𝑦+; = 𝑎+3𝑥3𝑎+<𝑦< = 𝑎+3𝑎+<𝑥3𝑦<

= 𝛿3<𝑥3𝑦< = 𝑥3𝑦3 = 𝒙 ⋅ 𝒚

𝑎$%𝑎$4 = 𝑎%$
6𝑎$4 = 𝑏%$𝑎$4 = 𝛿%4



Two dimensional case

𝑎$% ≡ 𝐞$3 ⋅ 𝐞% , for 𝑖, 𝑗 = 1,2

𝑎+3

https://en.wikipedia.org/wiki/List_of_trigonometric_identities

=
cos𝜙

cos(90° + 𝜙)
cos(90° − 𝜙)

cos𝜙

https://en.wikipedia.org/wiki/List_of_trigonometric_identities


Physical theories must be invariant to 
the choice of coordinate system

If we fix our attention on a physical vector (e.g. velocity) and then rotate the coordinate 
system 𝐾 → 𝐾3 , the vector will have different numerical components in the rotated 
coordinate system (as evident in the coordinate transformation rule we just discussed 
earlier). So we are led to realize that a vector is more than an ordered triple. Rather, it is 
many sets of ordered triples, which are related in a definite way. One still specifies a 
vector by giving three ordered numbers (components), but these three numbers are 
distinguished from an arbitrary collection of three numbers by including the law of 
coordinate transformation under rotation of the coordinate frame as part of the 
definition.

Thus, one physical vector may be represented by infinitely many sets of ordered triples. 
The particular triple depends on the chosen coordinate system of the observer.

This is important because physical laws (and results) must be the same regardless of 
coordinate system, that is, regardless of the orientation of observer’s coordinate system.



Physical laws and coordinate system

• The importance of thinking of these quantities in 
terms of their transformation properties lies in the 
requirement that physical theories must be invariant 
under the change of the coordinate system.
• Physical laws should not be affected by the choice of 

a coordinate system.
• We’ll examine this using an example in what follows.



Newton’s second law

𝑭 = 𝑚𝒂

𝐹+ = 𝑚�̇�+

Let’s assume acceleration �̈�!
is function of time, so that

�̈� ≡ �̈�!(𝑡)

Algebraic representation

→ 𝐹$ = 𝑚𝑎$

= 𝑚�̈�+

→ 𝐹$ = 𝑚�̇�$

𝑣$ =
,(%
,- = �̇�$

𝑎! = �̇�! =
𝑑𝑣!
𝑑𝑡

=
𝑑�̇�!
𝑑𝑡

= �̈�!

�̇� =
𝑑𝒂
𝑑𝑡

Furthermore, if we assume the mass is 
constant (which is quite usual), the 
second law is equation with the location 
𝒙! and its derivatives as variable – do not 
forget another variable time (𝑡).



Newton’s second law
𝐹+ 𝑡 = 𝑚 �̈�+(𝑡)

Let’s use 𝐾 coordinate system

1.	Initial	condition	in	terms	of	
location	(𝑥$)	and	velocity	(�̇�$):
𝑥$ 0 = 0, with 𝑖 = 1,2

�̇�! 0 = 𝑣. cos 𝜃
�̇�" 0 = 𝑣. sin 𝜃

2.	Force	given	by	gravity	is	constant	(gravity	field):
𝐹! = 𝑚�̈�! = 0, 𝐹" = −𝑚𝑔 = 𝑚�̈�"

3.	Estimate	𝑥$ t =?

𝑥$ t = 𝑥$ 0 + ]
.

- 𝑑𝑥$
𝑑𝑡 𝑑𝑡 = x/ 0 + ]

.

-
�̇�$𝑑𝑡

̇𝑥$ 𝑡 = �̇�$ 0 + ]
.

- 𝑑�̇�$
𝑑𝑡 𝑑𝑡 �̇�! 𝑡 = �̇�! 𝑡 = 0 + ]

.

-
�̈�!𝑑𝑡 = 𝑣. cos 𝜃 + 0

�̇�" 𝑡 = �̇�" 𝑡 = 0 + ]
.

-
�̈�"𝑑𝑡 = 𝑣. sin 𝜃 + ]

.

-
−𝑔𝑑𝑡 = 𝑣. sin 𝜃 − 𝑔𝑡

𝑥! 𝑡 = ]
.

-
𝑣. cos 𝜃 𝑑𝑡 = 𝑣.𝑡 cos 𝜃

𝑥" 𝑡 = ]
.

-
𝑣. sin 𝜃 − 𝑔𝑡 𝑑𝑡 = 𝑣.𝑡 sin 𝜃 −

1
2
𝑔𝑡"

𝑥! 0 means  𝑥! 𝑡 = 0



Newton’s second law
𝐹+(𝑡) = 𝑚�̈�+(𝑡)

Let’s use 𝐾′ coordinate system

1.	Initial	condition	in	terms	of	
location	(𝑥$)	and	velocity	(�̇�$):
𝑥$0 𝑡 = 0 = 0, with 𝑖 = 1,2

�̇�!0 0 = 𝑣.
�̇�"0 0 = 0

2.	Force	given	by	gravity	is	constant	(gravity	field):
𝐹! = 𝑚�̈�! = −𝑚𝑔 sin 𝜃 , 𝐹" = −𝑚𝑔 cos 𝜃 = 𝑚�̈�"
3.	Estimate	𝑥$ t =?

𝑥$ t = 𝑥$ 0 + ]
.

- 𝑑𝑥$
𝑑𝑡 𝑑𝑡 = x/ 0 + ]

.

-
�̇�$𝑑𝑡

̇𝑥$ 𝑡 = �̇�$ 0 + ]
.

-
�̈�$𝑑𝑡

�̇�! 𝑡 = �̇�! 0 + ]
.

-
�̈�!𝑑𝑡 = 𝑣. −]

.

-
𝑔 sin 𝜃 𝑑𝑡 = 𝑣. − 𝑔𝑡 sin 𝜃

�̇�" 𝑡 = �̇�" 0 + ]
.

-
�̈�"𝑑𝑡 = 0 − ]

.

-
𝑔 cos 𝜃 𝑑𝑡 = −𝑔𝑡 cos 𝜃

𝑥! 𝑡 = ]
.

-
𝑣. − 𝑔𝑡 sin 𝜃 𝑑𝑡

= 𝑣.𝑡 −
1
2𝑔𝑡

" sin 𝜃

𝑥" 𝑡 = ]
.

-
−𝑔𝑡 cos 𝜃 𝑑𝑡 = −

1
2
𝑔𝑡" cos 𝜃



Graphing the two results.
Plot the result with theta=45 degree

At t=0

at t=1s

at t=10s

at t=100s

• Which of the frame was the easy one? 

• Describe why we’d want to chose a 
frame that gives easy calculation?

Plot the result with theta=90 degree

At t=0

at t=1s

at t=10s

at t=100s





Summary

• Nomenclature
• What vectorial quantity is required? 
• Vector operations (addition, scalar multiplication, inner 

dot)
• Use the same coordinate system for vector operations

• Dyadic operation and Schmid tensor
• Identity matrix (Kronecker delta)
• Transpose operation
• Matrix addition and multiplication
• Changes of basis



Reference

https://www.continuummechanics.org


