
Plasticity (described with tensors)
Youngung Jeong



Theory of plasticity
• Rodney Hill



Yield criterion with stress tensor (not scalar)

• In order to use tensorial quantities and apply the former 
method, we’ll need to adjust a few assumptions.
• The use of Heaviside like function for yield criterion

!𝐻 𝜎 − 𝑌 → !𝐻 𝝈, 𝑌 . !𝐻 𝜎!" , 𝑌 .

We cannot just subtract 𝜎!" − 𝑌: 𝜎!" is a tensor, 𝑌 is a scalar quantity.

We introduce a scalar function, called the yield function.
Yield criterion is described as a function of 𝜎!" (two free indices)
We introduce a scalar function, called the yield function.
Yield criterion is described as a function of 𝜎!" (two free indices)

𝜙 = 𝜙 𝜎!" and Let’s use 𝜙 to see if yield condition is met (𝜙 = 𝑌) or not (𝜙 < 𝑌).



Strain-hardening with stress, strain tensors 
(not scalars)
• One use length of vector to quantify the ‘size’ of a vector.

• Similarly, we use equivalent scalar quantities for stress and strain tensors.

• The equivalent scalar quantity for stress tensor is simply called ‘equivalent stress’, 
and the same is applied to strain tensor (’equivalent strain’). 

• There are a few types of equivalent quantities. We’ll use only von Mises quantity.

• The definition of equivalent strain is not straightforward. We’ll have to determine 
the amount of plastic work done to the material that is under the given stress 𝜎!"
(thus providing us the above equivalent stress tensor).

-𝜎#$ =
1
2 σ%% − σ&& & + σ&& − σ'' & + σ'' − σ%% & + 6 σ%&& + σ&'& + σ%'&

(.*



Plastic work done
• Apparently, plasticity is non-linear, the work done for the time from 0 to t is defined 

using integration:

• 𝑤#$ 𝑡 = 𝑤#$ 𝑡 = 0 + ∫%
& 𝑑𝑤

• 𝑑𝑤#$ = 𝝈: 𝑑𝜺#$ = 𝜎!"𝑑𝜀!"
#$ (two dummy indices 𝑖, 𝑗)

• We postulate the work done calculated by stress and strain tensor (as done above) 
should be the same as the one calculated by the equivalent stress, equivalent strain.

• The	above	postulation	is	expressed	as	below:

• 𝑑𝑤#$ = 𝜎!"𝑑𝜀!"
#$ = 𝜎'(𝑑𝜀'( → 𝑑𝜀'( =

)!"*+!"
#$

*)%&

• For materials without previous deformation, the above can be written as:

𝜀'( 𝑡 = I
%

&𝝈: 𝑑𝜺#$

𝑑𝜎'(

𝜀#$ 𝑡 = 𝜀#$ 𝑡 = 0 + 6
(

+
𝑑𝜀#$ = 𝜀#$ 𝑡 = 0 + 6

(

+ 𝜎!"𝑑𝜀!"
,-

𝑑𝜎#$



Strain hardening?

• Say, your material obeys the Hollomon equation,

𝜎 = 𝐾.𝜀/

𝝈 = 𝐾.𝜺/ not possibly ; The mathematical operation of ‘exponential’ is not available.

𝜎#$ = 𝐾. 𝜀#$ /; Instead of using the tensors, we use ‘equivalent’ quantities (that are scalars).

• In case your material obeys linear hardening:
𝜎JK = 𝐾𝜀JK



Now, let’s look at the constitutive model again

𝑑𝜺
𝑑𝑡

= 𝑐 &𝐻 𝝈 − 𝑘 𝜺(𝑡) − -
!

" 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡 +

1
𝔼
:
𝑑𝝈
𝑑𝑡

The term for strain hardening 𝑘 𝜺(𝑡) − ∫(
+ %
𝔼
1𝔼
1+
𝑑𝑡 should be replaced by the 

empirical laws based on equivalent quantities.

𝝈 − 𝑘 𝜺 𝑡 − 6
(

+ 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡

𝑐 should be somehow replaced with a tensorial quantity similar to  1𝜺
!"

1+

→ 𝜙 𝝈 − 𝜎#$(𝜀#$) 𝜀#$ 𝑡 = 6
(

+𝝈: 𝑑𝜺
𝑑𝜎#$



Now, let’s look at the constitutive model again

𝑑𝜺
𝑑𝑡

= 𝑐 &𝐻 𝝈 − 𝑘 𝜺(𝑡) − -
!

" 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡 +

1
𝔼
:
𝑑𝝈
𝑑𝑡

Let’s assume the linear strain hardening 𝜎#$ = 𝐾.𝜀#$ is valid for our material, so 
that  𝑘 𝜺(𝑡) − ∫(

+ %
𝔼
: 1𝝈
1+
𝑑𝑡 should be replaced by 𝐾.𝜀#$

𝝈 − 𝑘 𝜺 𝑡 − 6
(

+ 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡

𝑐 should be somehow replaced with a tensorial quantity similar to  1𝜺
!"

1+
, for now,

Let’s replace 𝑐 with 1𝜺
!"

1+
as 𝜺 = 𝜺,- + 𝜺#-.   (→ 1𝜺

1+
= 1𝜺!"

1+
+ 1𝜺#"

1+
)

→ 𝜙 𝝈 − 𝐾.𝜀#$ 𝜀#$ 𝑡 = 6
(

+𝝈: 𝑑𝜺
𝑑𝜎#$

𝑑𝜺
𝑑𝑡

=
𝑑𝜺#$

𝑑𝑡
&𝐻 𝜙 𝝈 − 𝐾%𝜀&' +

1
𝔼
:
𝑑𝝈
𝑑𝑡



Finding unknown plastic strain !"
!"

!#
𝑑𝜺
𝑑𝑡

=
𝑑𝜺#$

𝑑𝑡
&𝐻 𝜙 𝝈 − 𝐾%𝜀&' +

1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺
𝑑𝑡

=
𝑑𝜺#$

𝑑𝑡
&𝐻 𝜙 𝝈 − 𝐾%𝜀&' +

1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺
𝑑𝑡

=
𝑑𝜺#$

𝑑𝑡
+
1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺,-

𝑑𝑡 ? ?
Let’s	postulate	Hill’s	idea	(associated	flow	rule)

𝑑𝜺,-

𝑑𝑡 =
𝑑𝜀#$

𝑑𝑡
𝜕𝜙 𝝈
𝜕𝝈

If	we	use	von	Mises	yield	criterion:

𝑑𝜀'(
)*

𝑑𝑡
=
𝑑𝜀+,

𝑑𝑡

𝜕 1
2 σ-- − σ.. . + σ.. − σ// . + σ// − σ-- . + 6 σ-.. + σ./. + σ-/.

0.2

𝜕𝜎'(

If	we	use	von	Mises	yield	criterion:

𝑑𝜀'(
)*

𝑑𝑡
=
𝑑 ∫0

3𝝈: 𝑑𝜺
𝑑𝜎+,
𝑑𝑡

𝜕 1
2 σ-- − σ.. . + σ.. − σ// . + σ// − σ-- . + 6 σ-.. + σ./. + σ-/.

0.2

𝜕𝜎'(



If	we	use	von	Mises	yield	criterion:

𝑑𝜀'(
)*

𝑑𝑡
=
𝑑 ∫0

3𝝈: 𝑑𝜺
𝑑𝜎+,
𝑑𝑡

𝜕 1
2 σ-- − σ.. . + σ.. − σ// . + σ// − σ-- . + 6 σ-.. + σ./. + σ-/.

0.2

𝜕𝜎'(

𝜕 1
2 σ!! − σ"" " + σ"" − σ## " + σ## − σ!! " + 6 σ!"" + σ"#" + σ!#"

$.&

𝜕𝜎'(

Notice the two free indices (i,j)
Let’s	say,	

𝑋 = σ!! − σ"" " + σ"" − σ## " + σ## − σ!! " + 6 σ!"" + σ"#" + σ!#"
Then,	

𝜕 1
2𝑋

$.&

𝜕𝜎'(
=
𝜕 1

2𝑋
$.&

𝜕𝑋
𝜕𝑋
𝜕𝜎'(

=
1
2

$.& 𝜕 𝑋 $.&

𝜕𝑋
𝜕𝑋
𝜕𝜎'(

=
1
2

$.&
0.5 𝑋)$.&

𝜕𝑋
𝜕𝜎'(

= 0.5
1
2𝑋

$.& 𝜕𝑋
𝜕𝜎'(

𝜕𝑋
𝜕𝜎!!

= 2 𝜎!! − 𝜎"" + 2 𝜎!! − 𝜎##
𝜕𝑋
𝜕𝜎""

= 2 𝜎"" − 𝜎!! + 2(𝜎"" − 𝜎##)
𝜕𝑋
𝜕𝜎##

= 2 𝜎## − 𝜎!! + 2(𝜎## − 𝜎"")

𝜕𝑋
𝜕𝜎!"

= 12𝜎!" =
𝜕𝑋
𝜕𝜎"!

𝜕𝑋
𝜕𝜎"#

= 12𝜎"# =
𝜕𝑋
𝜕𝜎#"

𝜕𝑋
𝜕𝜎!#

= 12𝜎!# =
𝜕𝑋
𝜕𝜎#!



Problem: stretching an elasto-plastic rod with 
linear hardening

𝑑𝒖
𝑑𝑡

=
∇𝒖

10 [𝑠𝑒𝑐]

∇𝐮 =
0.01 0 0
0 −0.005 0
0 0 −0.005

Let’s assum your material obeys the 
von Mises yield criterion

𝑑𝜺
𝑑𝑡

=
𝑑𝜺#$

𝑑𝑡
&𝐻 𝜙 𝝈 − (𝑌! + 𝑘𝜀&') +

1
𝔼
:
𝑑𝝈
𝑑𝑡

Perfect-plastic (no hardening; 𝑌( is constant)

with associated flow rule:  14
#$

1+
56 𝝈
5𝝈

𝜺 =
0.01 0 0
0 −0.005 0
0 0 −0.005

𝑑𝜺
𝑑𝑡

=
0.001 0 0
0 −0.0005 0
0 0 −0.0005



Elastic predictor and corrector algorithm

𝑑 𝛁𝒖
𝑑𝑡

=
1
10

0.01 0 0
0 −0.005 0
0 0 −0.005

𝑿 initial positions

𝒙(𝑡) = 𝑿 + 𝒖(𝒕)

While time increment is Δ𝑡

Δ𝜺 =
7 %
&(∇𝒖;∇𝒖

')

1+
Δ𝑡

Initially	assuming	that	all	strain	is	elastic
Δ𝝈 = 𝔼: Δ𝜺

Stress	is	updated:
𝝈(/;%) = 𝝈(/) + Δ𝝈
𝝈(/;%) = 𝝈(/) + 𝔼: Δ𝜺
= 𝝈(/) + 𝔼: Δ𝜺

Check	if	𝜎(/;%) really	gives	
only	elastic	contribution

𝜙(𝜎(/;%)) < 𝑐 or 𝜙 𝜎(/;%) = 𝑐 or 𝜙(𝜎(/;%)) > 𝑐

Correcting elastic strain Δ𝜎 = 𝔼(Δ𝜀 − Δ𝜀,-)

You are correct about the strain 
decomposition, let’s move on to next 
time increment (end)

Plasticity update

Δ𝜀!"
,- = Δ𝜀#$

𝜕𝜙
𝜕𝜎!"

Δ𝜀!" = Δ𝜀!"#- + Δ𝜀!"
,-



Elastic predictor and corrector algorithm

Initially	assuming	that	all	strain	is	elastic
Δ𝜎!" = 𝔼!"=-Δ𝜀=-

Find	the	stress	corresponding	to	the	
current	stress	increment
𝝈(/;%) = 𝝈(/) + Δ𝝈

Check	if	𝝈(/;%) is	inside,	on	or	over	the	yield	criterion
𝜙 𝝈(/;%) < 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)
or 𝜙 𝝈(/;%) = 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)
or 𝜙 𝝈(/;%) > 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)

Plastic strain update

Δ𝜀!"
,- = Δ𝜀#$

𝜕𝜙
𝜕𝜎!"

Correcting elastic strain 
Δ𝜀!"#- = Δ𝜀!" − Δ𝜀!"

,-

That gives new stress increment
Δ𝜎!" = 𝔼>?@A(Δ𝜀=- − Δ𝜀=-

,-)
(adjust strain decomposition

If 𝜙 𝝈(/;%) ≤ 𝑌( + 𝑘(𝜀(/)
#$ + Δ𝜀#$)

𝝈(/;%) is consistent with our theory.
Let’s move on to next time increment


