Plasticity (described with scalars)
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Linear isotropic elasticity

Elastic constitutive law (Hooke’s law):
E;jki€x = 0ij (linear elasticity)

E;jki = 460k + M(5ik5jz + 5i16jk) (isotropic elasticity; two constants A, i)

Replacing E;j; to the Hooke’s law
0ij = Eijki€rr = A6;j0pi&k + H(5ik5jl + 5il5jk)€kl
= A8;jekk + U(8i0j1€x1 + Oubiker) = Abijery + u(Sirerj + Suen)
= Aaijgkk + ,U(Eij + gji) = /15ij€kk + ZHEU
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Theory of plasticity
* Rodney Hill

atician




What makes plasticity complicated

* Plasticity is more complicated than elasticity, because of the ‘non-linearity’ in the
constitutive behavior.

If it were linear, as in the elasticity, the constitutive description based on tensors can be

expressed as linear algebraic expression such that ol
lo] = [E][e*]

* Elastic deformation occurs whenever o # 0 is applied. In plasticity, there is a certain set of
criteria which should be met for plasticity to kick in. (Yield criterion, yield surface)

* The non-linearity in the plastic constitutive description, is well expressed in its 'differential
equation’.

dé’l‘j _ dA 6(,1)(0)
dt B dt aO'ij

(In the above two free indices implied: i, j; Since o and € are symmetric,
only 6 equations are implied.)

e Strain-hardening occurs; Strain rate-sensitivity is present.



What makes plasticity complicated

* Elastic behavior of metals (and of most materials) is very well
understood. However, plasticity remains relatively not well
understood and behaviors are often described empirically
(assumptions based on observing the phenomena/experimental
behaviors)

* Not a single rule prevails ... (as opposed to Hooke’s law for
elasticity). There are various mathematical models (theories)
developed to describe plastic behavior of metals.

* Experimental methods often are limited to ‘uniaxial’ cases (where
only a single component of stress tensor is not zero). Therefore, with
using the available experimental data, it feels like using a ‘scalar’
clue to describe ‘vectorial’ (or tensorial) world...



Concept of yield criterion.

* We introduce a yield criterion as a scalar function (often
denoted as @) of stress tensor o

* ¢ = ¢p(a). Justlike f = f(x). Both functions return a ‘scalar’
quantity (often denoted by its own symbol such as ¢ or f). The
important difference between them is that the argument is
‘tensor’ for the case of yield function ¢, while the function f
takes in a scalar quantity x.

* We say if the stress state of material meets the yield condition
if @ = c with c being the given material characteristic (which
often represents the material’s yield strength)

* We also use this yield function as plastic potential in flow rule
(associated flow rule)



Thought experiments on 4
distinguished (virtual) materials
Linear elastic materials (a)

Rigid perfect plastic materials (b)
Elastic-Rigid perfect plastic material (a+b)

N

Elastic-plastic (elasto-plastic) with hardening (c)



Linear elasticity: Behavior of material that exhibits only linear elasticity (virtual experiments)

do_ O_ y
dt R do dodt __
g z-wE - F
t
A I3
E
z \ Our target (i.e., constitutive description) is to find
> the relationship between o and ¢
t
do de d €
—=F— >S5do=Eds = do =E de
dt dt 0 0

-0 =FEs¢

With tensors, we express the above
—»0o=E:¢




Rigid perfect plastic (virtual experiments)

O— a
O_ A
oc=Y
- £
‘ do + 0 de _ 0,0 <Y
dar ” dr ¢ \ de
A E = 0,0' <Y
) o _ 0 ae +0,0=Y
at - a0
de
> do de —_=c,0=Y
—#*0,—=0,0<Y dt
r dt dt
Determine if 0 = Y is met, or not — yield criterion
H: Heaviside function:; Similarly, Let’s define H Constitutive model

1, >0 l,o=Y de .
H(x) ={ ’ H(a—Y){ —=cH(oc—-Y)
0, =0 0,0 <Y dt
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gelu

do de

0,

a” ar

d d — ==
¢0,<—0=E g)a<y—> dt

Elastic-Rigid perfect plastic (virtual experiments)

Ifo <Y,

daiodeio(da_Ede) —y
at ” ar s \ar - Cae) ¢
dG—OdgiO _y §=ca=
ar . dr 0T at

de_depl_l_deel

dt ~ dt = dt

de_ ﬁ( Y)_l_lda

dat e E dt

Maxwell assumption

de_ 1do
dt  E dt
de 1do



Elastic-plastic with linear hardening (virtual experiments)

A 4

a £
de _ of o Y=Y o), 1do
ar=H\e a “O)Fw
de Y'— ldo
= O _yo0 _ __ el s
t — = cH {a Y (e(t) £ (t))} + =
de e Y=Y jtldadt , Ldo
at - e a \fO~) Far Edt
epbl . Strain-hardening: y' — yO
Y=Y(eP!) >V =Y"+—¢P

a
/ b oae L vo o ), 1do
= che le® = JEE T




Simulation using Google spread sheet

You'll need to create your own This site tells you how to create a custom function
(custom) function to use ﬁ https://developers.google.com/apps-script/guides/sheets/functions

| wrote my own as below:

function hhat(sig,y) {
if (sig<y){
return 9;
}
if (sig==y){
return 1;
}
if (sig>y){
return -1;
}
}


https://developers.google.com/apps-script/guides/sheets/functions

Problem 1)

* Tensile a rigid-plastic body with the initial length of
10 in the rate of
dl mm
— =0.001 |—]
dt sec

for 10 seconds.

* The body has the elastic modulus of 200,000 MPa
and Y as 150 MPa.



To solve elasto-plastic problem with tensors...

* You'll need a special algorithm
* A most common (and basic) algorithm is ‘return-mapping’:

1.

At first, assume that the strain increment (Ag) is purely elastic
(i.e., Asel = Ag), and use Hooke’s law to obtain stress

mcrement (Ao = EAe®Y).

If stress + stress increment (o + Ao) does not meet yield
criterion (i.e., ¢ (0 + Aog) < Y), you are safe with this
assumption and you are all set. (fin.)

If stress + stress increment (o + Ao) gives stress level that is
higher than ‘yield surface’ (i.e., ¢ (o + Ag) > Y), your
assumption is wrong and |terat|vely reestimate elastic strain
mcrement (thus plastic strain increment since As = AgP! +
A&€) until the condition ¢(o + Ag) =Y is satisfied.

* For this one, you’ll need a numerical iteration (such as Newton-
Raphson).

* There can be different algorithms which can replace the
above algorithm. (Multiple solutions for a question)



Yield criterion with stress tensor (not scalar)

* In order to use tensorial quantities and apply the
aforementioned method, we’ll need to adjust a few

assumptions.

* The use of Heaviside like function for yield criterion
H(o-Y) - H(o,Y). H(o;;,Y).

We cannot just subtract g;; —Y:  note that g;; is a tensor, while Y is a scalar quantity.

We introduce a scalar function, called the yield function.
Yield criterion is described as a function of g;; (two free indices)

¢ = qb(al-j) and Let’s use ¢ to see if yield condition is met (¢ = Y) ornot (¢p <Y).



Strain-hardening with stress, strain tensors
(not scalars)

One use length of vector to quantify the ‘size’ of a vector.

Similarly, we use equivalent scalar guantities as a (sort of) measure for sizes
pertaining to stress and strain tensors.

The equivalent scalar quantity for stress tensor is simply called ‘equivalent stress’,
and the same is applied to strain tensor (‘equivalent strain’).

There are a few types of equivalent quantities. We’ll use only von Mises quantity.
0.5

B 1
O-eq = E{(Gll — 022)2 + (0-22 — 0-33)2 + (0-33 - 0-11)2 + 6(0-%2 + 0-%3 + 0-%3)}

The definition of equivalent strain is not straightforward. We’ll have to determine
the amount of plastic work done to the material that is under the given stress o;;
(thus providing us the above equivalent stress tensor).



Plastic work done

Apparently, plasticity is non-linear, the work done for the time from 0 to t is defined
using integration:

wPL(t) = wPl(t = 0) + [ dw
dwPl = g:deP! = aijdelpjl (two dummy indices i, j)

We postulate the work done calculated by stress and strain tensor (as done above)
should be the same as the one calculated by the equivalent stress, equivalent strain.

The above postulation is expressed as below:

. deP!

do€4d

l
dwP! = aijdslpj = g%1de®l - del =

J
e
o docd

l
tO'i'dglpj

t
el(t) =e®(t=0) + j de€? =°1(t =0) +
0

For materials without previous deformation, the above can be written as:

ced () — La: dePt
g do®d




Strain hardening?

 Say, your material obeys the Hollomon equation,
o=Y"+K'e"

o =YY%+ K'e" (not possibly); The mathematical operation of ‘exponential’ is not available.

gl =YY + K'(£29)™; Instead of using the tensors, we use ‘equivalent’ quantities (that are sca

* In case your material obeys linear hardening:
g4 =YY + Kee



Now, let’s look at the constitutive model again

de of Vo _ . jtl dad 1_da
oY ke® - | gt it g

Linear strain hardening: 6¢? = K’ should somehow replace Y° + k (e(t) - ftld—ad )

Since yield stress increases as more plastic deformation is applied.

to:de
e
o do®l

o—Y%—Fk <g(t) — . EE dt) N ¢(0.) (U g% () gel(t) =

deP!
¢ should be somehow replaced with a tensorial quantity similar to o for now,

Let’s replace ¢ with p (spl) and dA is differential form of a scalar quantity that is
a function of plastic strain €P?.




Now, let’s look at the constitutive model again

de = 1 do de dePl _ 1 do
0_ =22 == - _yO0 _greeay L —.
dt H{G Y (8@ j E dtd> “dt 3 ar H@@ — Y =KDl iy
Linear strain hardening: 09 = Y° + K'£9 should somehow replace Y? + k (s(t) — fot% Z—:dt) Since
yield stress increases as more plastic deformation is applied.
0 . to:de
o — kle@® - | = —dt > ¢(o) - Y0 —g®i(e)  e°(t) = .
o docd
deP!
¢ should be somehow replaced with a tensorial quantity similar to o for now,

dePl de dePl  defl
Let’s replace c with &— as e = P! + £°, (» £ =
dt at  dt ' adt




Finding unknown plastic strain

de deP! _ 1 do
—_— — YO0 _ g'ceq —_
Fri iy H(p(o) —Y? —K'e )+IE. R
de deP! _ 1 do de de’ 1 do
= _vyv0 _ pr.eq . R TR
dt dt H(glo) —Y" = K'e )+IE'dt dt dt E dt
d P! Let’s postulate Hill's idea (associated flow rule)
dt 27 dePt  de®l (9¢ (o)
dt dt \ do

If we use von Mises yield criterion:

1 0.5
dgg,l de€d 0 {[E{(Gn — 042)% + (053 — 033)2 + (033 — 011)% + 6(0%, + 053 + 0%3)}] }

dt dt aO'ij

If we use von Mises yield criterion:

1 0.5
to:de) [ 94| — 2 4 — 2 4 _ 2 4 6(62, + 62, + o2
dglpjl d {fo daeq} {[2 {(011 — 022) (022 — 033) (033 —011) (012 + 033 013)}]




Yet, another example with scalars

If you are not yet fa
vector (tensor) alge

numerical analysis, |

much mathematics

ust

dlre
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miliar with
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feel
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ved ...



Problem: stretching an elasto-perfect-plastic rod

Perfect-plastic (no hardening; Y° is constant)

e (50)

de deP! 1 do ) i
i e 7 —Y) + . with associated flow rule:
2~ ar @) —Y) + g at

Let’s say, your yield function ¢ (o) is

$(0) = o2

Your yield criterion:

¢(c) =+ 0% =100
Say, your material yield property, Y° = 100

[(t=0) =1,

Your yield function gives

NN N N

dp(o) ’
do
and
For the case of the current ¢ (o = 100) = 100 satisfies yield condition

’scalar’ example,
gl =¢,0% =¢



Elastic predictor and corrector algorithm

I(t =0) =1,

_ While time increment is At
> dl Al

E=v Ag_l
Al
Ao = EAe = E—

[

Correcting elastic strain Ac = [E(A¢e — Aepl)

Check if o, 41y really gives
only elastic contribution

Initially assuming that all strain is elastic

NN N N

Stress is updated:
O(n+1) = O(n) + Ao
O'(n+1) = U(Tl) + EAe

Al P(On+1)) < ¢ of P(0(n+1y) = c of P(On41)) > ¢
= O'(n) + [E—

[

You are correct about the strain Plasticity update

decomposition, let’s move on to next AePl =
time increment (end)

Ae = A& + AeP!



Elastic predictor and corrector algorithm

Al = AtXv

Initially assuming that all strain is elastic

Al
Ao = [EAe = IET

Correcting elastic strain
Ae®t = Ae — AgP?
That gives new stress increment

Ao = E(As — AsPh)
(adjust strain decomposition

Find the stress corresponding to the
current stress increment

Omn+1) = Omn) + Ao <

Check if 0, , 1) is inside, on or over the yield criterion LG uDad(;te
— pl — Ag€d ——
$(001)) <10 0 §(01r0) = Y0 or H(001ir) > 1" e = 0e0

If ¢p(omeny) <Y°

O(n+1) is consistent with our theory.
Let’s move on to next time increment




Plastic strain update

APl =

That’s exactly what

— eqy _ 0 ; eq i eq\ —
F(AA) = ¢p(Aef?) — (YY), find Ae®? that gives F (A7) = 0 NR can do.

dF (Ae?)  d(¢p(o) —Y°) d¢(o) dp(o) do ™ d(omy +40)  dAc
dAseqd dAced " dAse? do dAsed dAced ~ dAsed

B dE(Ae — AePt) N dAeP!

= pl
dAeed ~E dAecd E sgn(Ae )
F (Aeeq)
eq  _ a.eq _ (k) plY — 1 pl
AE(RH) = Ae(k) o sgn(AeP]) sgn(Ae ) 1ifAeP* >0

sgn(AeP!) = —1if AeP! < 0

Caution! Need validation



Cheat sheet

5 real function calc_yield_function(stress)
6 implicit none

7/ real stress

8 calc_yield_function = sqrt(stress**2.)

9 return
end function

12 program elasto_plasticity_scalar

13 implicit none

14 real calc_yield_function

15 real dt, E, c, t, 1, dl, eps, deps, deps_el, deps_pl,dsig,
16 $ stress

17 real vel, f, tol

18 integer kount,iplast

parameter(tol=1e-6)

21 open(3,file='elasto_plasticity_scalar.txt"')
22 dt = 0.02 I time increment
23 E 200000 I elastic modulus
c = 200. ! yield criterion
stress = 0. ! initial stress
)
I
)

eps = 0. initial strain
1=1. initial length
t =0. initial time

do while(t<1.0)
Loading condition 1
if (t.le.0.25) then

vel = 0.01
elseif (t.gt.@.25.and.t.1le.0.55) then
vel =-0.01
else
vel = 0.01
endif
dl = vel * dt
deps =dl / 1
initially assuming all strain is elastic
deps_pl = 0.0

deps_el = deps
guess on stress increment
dsig = E * deps_el

kount = @

f = calc_yield_function( stress+ dsig) - c

iplast=0

do while (f.gt.tol.and.kount.l1t.3) ! if exceeding plastic onset
iplast=1

deps_el = deps - deps_pl

dsig = e * deps_el

f = calc_yield_function(stress+dsig) - c

estimate new plastic increment

deps_pl = deps_pl - f/(-E)*sign(1.,deps)

kount = kount +1
enddo
write(3,'(2f9.4,2f10.4,2i2)"')t,1,eps,stress, iplast, kount
stress = stress + dsig
eps = eps + deps

t=1t + dt

1=1+dl
enddo
close(3)

end program



Problem: stretching an elasto-plastic rod with
linear hardening

Perfect-plastic (no hardening; Y° is constant)
de  dePl 1 do o
— = = A(p(e) — (YO + ke®D)) + =1 — e (04)(0))

dt = dt E dt Wwith associated flow rule:

Let’s say, your yield function ¢ (o) is

$(0) = o2

" dl Your yield criterion:

[(t=0) =1,

dt ¢(c) =+ 0% =100
‘ Say, your material yield property, Y°

Your yield function gives

NN N N

dp(o) ’
do
and
For the case of the current ¢ (o = 100) = 100 satisfies yield condition

’scalar’ example,
el =¢,0°% =



Elastic predictor and corrector algorithm

I(t =0) =1,

_ While time increment is At
> dl Al

E=v Ag_l
Al
Ao = EAe = E—

[

Correcting elastic strain Ac = [E(A¢e — Aepl)

Check if o, 41y really gives
only elastic contribution

Initially assuming that all strain is elastic

NN N N

Stress is updated:
O(n+1) = O(n) + Ao
O'(n+1) = U(Tl) + EAe

Al P(On+1)) < ¢ of P(0(n+1y) = c of P(On41)) > ¢
= O'(n) + [E—

[

You are correct about the strain Plasticity update

decomposition, let’s move on to next AePl =
time increment (end)

Ae = A& + AeP!



Elastic predictor and corrector algorithm

Al = AtXv

Initially assuming that all strain is elastic

Al
A =IEA€=IET

Find the stress corresponding to the
current stress increment

Correcting elastic strain
Ae®t = Ae — AgP?
That gives new stress increment

Ao = E(As — AsPh)

O-(n+1) = O-(n) + Ao <

Check if 0, , 1) is inside, on or over the yield criterion
G(Tnin) <VO+ k(e + M)
or ¢(0(ns1y) =Y + k(e(n) + As€)
or gb(a(n+1)) > Y9+ k(e(n) + Ae®?)

(adjust strain decomposition

Plastic strain update

APl = Agel — 9%
do

If ¢(g(n+1)) <Y%4 k(e(n) + Aeq)

O(n+1) Is consistent with our theory.

Let’s move on to next time increment



Plastic strain update

a9

AePl = Aeg®q —
do That’s exactly what
NR can do.

’ ("’(“) - (o (e + Ageq») _del0) | _d9(0) do

dF (0e®)
dAsed dAseq ( l)_ dAsed : do dAsed
d(oem) + Ao) dAo dE(As — AP dAeP
—k = —k = —k =~ — k = Esgn(AePt) — k
dAeed dAced dAced E Jize7 — k= Esgn(ae™)

eq
A€l eq K (Ag(k))
(k) —oEsgn(AeP!) + k

(k+1) — Ae

sgn(AeP!) = 1if AePt > 0
sgn(AeP!) = —1if AeP! < 0

Caution! Need validation



Google spreadsheet example on
elasticity-linear plasticity (scalar

https://docs.google.com/spreadsh

eets/d/1ithHT-

f mQlyv9Vx2fBt o6bMWRQq8HIb0

N5VXrw2ySA/edit?usp=sharing

my loading condition
time incr (dt)

time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
22
24
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

length

0.2 dl/dt 0.01 Delta | 0.002
eps eps_pl stress dstrain dsigma (pure)+stress H (sig"guss-Y)

10 0 0 0 0.0002 40 0
10.002 0.0002 0 40 0.000199960008 79.9920016 0
10.004 0.000399960008 0 79.9920016 0.000199920032 119.976008 0
10.006 0.00059988004 0 119.976008 0.000199880072 159.9520224 -1
10.008 0.000799760111:0.000047272106  150.4976011 0.000199840127 190.4656267 -1
10.01 0.000999600239 0.000237238408  152.4723663 0.000199800199 192.4324063 -1
10.012 0.00119940044'&000427523513. 154.3753852 0.000199760287 194.3274427 -1
10.014 0.001399160727 0.000617771499  156.2778455 0.000199720391 196.2219238 -1
10.016 0.00159888 -1
10.018 0.00179856 stress -1
10.02 0.00199820; 300 -1
10.022 0.00219780: -1
10.024 0.00239736: -1
10.026 0.00259688 -1
10.028 0.00279636: 200 -1
10.03 0.00299580¢{ g -1
10.032 0.00319520¢ & il
10.034 0.00339457 100 -1
10.036 0.00359389¢ -1
10.038 0.00379317! -1
10.04 0.00399241 0 -1
10.042 0.00419162 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 A
10.044 0.00439078! Strain -1
10.046 0.00458991 -1
10.048 0.004788994471 0.003846186202  188.5616537 0.000199044586 228.3705709 -1

Elast Modulus (M

200,000

deps_elasticity deps_plas
0.0002 0
0.000199960008 0
0.000199920032 0

0.000152607965 0.000047272106
0.000009873826 0.000189966301
0.000009515094 0.000190285105
0.000009512301 0.000190247986
0.000009510399 0.000190209991
0.000009508500 0.000190172010
0.000009506602 0.000190134044
0.000009504704 0.000190096093
0.000009502808 0.000190058157
0.000009500912 0.000190020237
0.000009499016 0.000189982331
0.000009497122 0.000189944441
0.000009495228 0.000189906566
0.000009493335 0.000189868705
0.000009491443 0.000189830860
0.000009489551 0.000189793030
0.000009487661 0.000189755215
0.000009485771 0.000189717415
0.000009483882 0.000189679631
0.000009481993 0.000189641861
0.000009480105 0.000189604106
0.000009478219 0.000189566367

function decompose_lh(s,E,y,de,eeq, k)

// elasticity - plasticity with linear hardening
// initial guess with assuming pure elasticity
deq=0

del=de-deq

// F=yield(s+E*del)-y

tolerance=Te-9

F=2*tolerance

kount=0

while(F>tolerance){

// calculate F
F=yield(s+E*del)-(y+k*(eeq+deq))
deq=deq-F/(-E)//*sign(1,de)

if (de<@) {

deg=deq*-1

}

del=de-deq

kount=kount+1

if (kount>20){

throw 'too many iterations', kount
}

}

return del

}



https://docs.google.com/spreadsheets/d/1ithHT-f_mQIyv9Vx2fBt_o6bMWRq8Hlb0N5VXrw2ySA/edit?usp=sharing

Or

In [1]:

e

In [2]:

In [3]:

In [4]:

Out[4]:

Jupyter notebook (Python

%pylab inline

Populating the interactive namespace from numpy and matplotli
b

* Yield surface ¢ = /o2

def ys(s): return np.sqrt(s*x2)

## predictor corrector algorithm to determine plastic strain 1
def decompose(s,E,y0,de,eeq,k):
deq=0
deel=de-deq
tolerance=1e-9
#F=2xtolerance
F=ys (s+Exdeel)-(y0@+k*(eeq+deq))
kount=0
while F>tolerance:
F=ys(s+Exdeel)-(y0+k*(eeq+deq))
deq=deq-F/((-E)*np.sign(de))
deel=de-deq
kount=kount+1
#print('deq:"',deq)
if kount>20:
raise IOError('something went wrong")
return deel

=4

E=200000 ## Z'E (Young's modulus)
y0=200 ## £7| g2 Z=

k=10000 ## Hardening parameter
decompose(100,E,y0,1e-3,0,k)

0.0005250000000000001

In [5]1:

In [6]:

In [7]:

Out[7]:

oh

15 =2 (2501

t=np.linspace(0,10) ## A/Zt 0= 2E 10= 7HX|
1=np.linspace(10,10.1) ## Z/0/ 10[mm]ofA{ 10.1[mm]7tX| &

## initially zero stress, zero plastic equivalent strain
s=0
eeq=0
e=0
x=[]
y=I[1
for i in range(len(t)-1):
#x.append(eeq)
x.append(e)
y.append(s)
dl=1[i+1]-1[il]
de=dl/1[i]
e=e+de
deel = decompose(s,E,y0,de,eeq, k)
s=s+dee LxE
depl=de-deel
eeq=eeq+depl

fig=plt.figure();ax=fig.add_subplot(111)
ax.plot(x,y,'-")

ax.set_xlabel('strain')
ax.set_ylabel('stress"')

Text(0, 0.5, 'stress')
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stress

0.000 0.002 0.004 0.006 0.008 0.010
strain

https://gist.github.com/youngung/07615666a85d663eae9cbb157fa33e38
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