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Linear isotropic elasticity

Elastic constitutive law (Hooke’s law):
𝔼!"#$𝜀#$ = 𝜎!" (𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)

𝔼!"#$ = 𝜆𝛿!"𝛿#$ + 𝜇 𝛿!#𝛿"$ + 𝛿!$𝛿"# (𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦; 𝑡𝑤𝑜 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝜆, 𝜇)

Replacing 𝔼!"#$ to the Hooke’s law
𝜎!" = 𝔼!"#$𝜀#$ = 𝜆𝛿!"𝛿#$𝜀#$ + 𝜇 𝛿!#𝛿"$ + 𝛿!$𝛿"# 𝜀#$
= 𝜆𝛿!"𝜀## + 𝜇 𝛿!#𝛿"$𝜀#$ + 𝛿!$𝛿"#𝜀#$ = 𝜆𝛿!"𝜀## + 𝜇 𝛿!#𝜀#" + 𝛿!$𝜀"$
= 𝜆𝛿!"𝜀## + 𝜇 𝜀!" + 𝜀"! = 𝜆𝛿!"𝜀## + 2𝜇𝜀!"



History of plasticity and metal forming analysis

https://doi.org/10.1016/j.jmatprotec.2010.04.001



Theory of plasticity
• Rodney Hill



What makes plasticity complicated
• Plasticity is more complicated than elasticity, because of the ‘non-linearity’ in the 

constitutive behavior.

If it were linear, as in the elasticity, the constitutive description based on tensors can be 
expressed as linear algebraic expression such that

• Elastic deformation occurs whenever 𝝈 ≠ 𝟎 is applied. In plasticity, there is a certain set of 
criteria which should be met for plasticity to kick in. (Yield criterion, yield surface)

• The non-linearity in the plastic constitutive description, is well expressed in its ’differential 
equation’. 

𝑑𝜀!"
𝑑𝑡 =

𝑑𝜆
𝑑𝑡
𝜕𝜙(𝝈)
𝜕𝜎!"

(In the above two free indices implied: 𝑖, 𝑗; Since 𝝈 and 𝜺 are symmetric,
only 6 equations are implied. )

• Strain-hardening occurs; Strain rate-sensitivity is present.

𝝈 = 𝔼 𝛆%$



What makes plasticity complicated
• Elastic behavior of metals (and of most materials) is very well 

understood. However, plasticity remains relatively not well 
understood and behaviors are often described empirically
(assumptions based on observing the phenomena/experimental 
behaviors)

• Not a single rule prevails ... (as opposed to Hooke’s law for 
elasticity). There are various mathematical models (theories) 
developed to describe plastic behavior of metals.

• Experimental methods often are limited to ‘uniaxial’ cases (where 
only a single component of stress tensor is not zero). Therefore, with 
using the available experimental data, it feels like using a ‘scalar’ 
clue to describe ‘vectorial’ (or tensorial) world…



Concept of yield criterion.
• We introduce a yield criterion as a scalar function (often 

denoted as 𝜙) of stress tensor 𝝈

• 𝜙 = 𝜙 𝝈 .  Just like 𝑓 = 𝑓 𝑥 . Both functions return a ‘scalar’ 
quantity (often denoted by its own symbol such as 𝜙 or 𝑓). The 
important difference between them is that the argument is 
‘tensor’ for the case of yield function 𝜙, while the function 𝑓
takes in a scalar quantity 𝑥.

• We say if the stress state of material meets the yield condition 
if 𝜙 = 𝑐 with c being the given material characteristic (which 
often represents the material’s yield strength)

• We also use this yield function as plastic potential in flow rule 
(associated flow rule)



Thought experiments on 4 
distinguished (virtual) materials
1. Linear elastic materials  (a)
2. Rigid perfect plastic materials (b)
3. Elastic-Rigid perfect plastic material (a+b)
4. Elastic-plastic (elasto-plastic) with hardening (c)



𝜎

𝜀

𝜎

𝑡

𝜀

𝑡
𝑑𝜎
𝑑𝑡 = 𝐸

𝑑𝜀
𝑑𝑡 → 𝑑𝜎 = 𝐸𝑑𝜀 → `

&

'
𝑑𝜎 = 𝐸`

&

(
𝑑𝜀

→ 𝜎 = 𝐸𝜀

Linear elasticity: Behavior of material that exhibits only linear elasticity (virtual experiments)

With	tensors,	we	express	the	above
→ 𝝈 = 𝔼: 𝜺

𝑑𝜎
𝑑𝑡

𝑑𝜀
𝑑𝑡

𝑑𝜎
𝑑𝜀

=
𝑑𝜎
𝑑𝑡
𝑑𝑡
𝑑𝜀 = 𝐸

Our target (i.e., constitutive description) is to find 
the relationship between 𝜎 and 𝜀



𝜎

𝜀

𝜎

𝑡

𝜀

𝑡

Rigid perfect plastic (virtual experiments)

𝑑𝜎
𝑑𝑡

≠ 0,
𝑑𝜀
𝑑𝑡
= 0, 𝜎 < 𝑌

𝑑𝜎
𝑑𝑡

= 0,
𝑑𝜀
𝑑𝑡
≠ 0, 𝜎 = 𝑌

𝑑𝜎
𝑑𝑡

≠ 0,
𝑑𝜀
𝑑𝑡
= 0, 𝜎 < 𝑌

𝜎 = 𝑌

𝑑𝜀
𝑑𝑡
= 0, 𝜎 < 𝑌

𝑑𝜀
𝑑𝑡
= 𝑐 , 𝜎 = 𝑌

Determine if 𝜎 = 𝑌 is met, or not → yield criterion

𝐻(𝑥)

𝐻: Heaviside function; 

g𝐻 𝜎 − 𝑌
1, 𝜎 = 𝑌

0, 𝜎 < 𝑌

Similarly, Let’s define g𝐻
𝑑𝜀
𝑑𝑡 = 𝑐 g𝐻 𝜎 − 𝑌

Constitutive model



𝜎

𝜀

𝜎

𝑡𝜀

𝑡

Elastic-Rigid perfect plastic (virtual experiments)

𝑑𝜎
𝑑𝑡

≠ 0,
𝑑𝜀
𝑑𝑡
≠ 0,

𝑑𝜎
𝑑𝑡

= 𝐸
𝑑𝜀
𝑑𝑡

𝜎 < 𝑌

𝑑𝜎
𝑑𝑡

= 0,
𝑑𝜀
𝑑𝑡
≠ 0, 𝜎 = 𝑌

𝑑𝜎
𝑑𝑡

≠ 0,
𝑑𝜀
𝑑𝑡
≠ 0,

𝑑𝜎
𝑑𝑡

= 𝐸
𝑑𝜀
𝑑𝑡

𝜎 < 𝑌

𝜎 = 𝑌

𝑑𝜀
𝑑𝑡
=
1
𝐸
𝑑𝜎
𝑑𝑡
, 𝜎 = 𝐸𝜀, 𝜎 < 𝑌

𝑑𝜀
𝑑𝑡
= 𝑐, 𝜎 = 𝑌

𝑑𝜀
𝑑𝑡
= 𝑐 .𝐻 𝜎 − 𝑌 +

1
𝐸
𝑑𝜎
𝑑𝑡

If 𝜎 < 𝑌,
𝑑𝜀
𝑑𝑡
=
1
𝐸
𝑑𝜎
𝑑𝑡

If 𝜎 = 𝑌,
𝑑𝜀
𝑑𝑡
= 𝑐 +

1
𝐸
𝑑𝜎
𝑑𝑡

𝜀∗

𝜀∗ = &
"

# 𝑑𝜀$%

𝑑𝑡
𝑑𝑡

𝜀∗

𝜀)$

𝑡
𝜀%$

𝑡

𝑑𝜀
𝑑𝑡
=
𝑑𝜀!"

𝑑𝑡
+
𝑑𝜀#"

𝑑𝑡
Maxwell assumption



𝜎

𝜀

𝜎

𝑡
𝜀

𝑡

𝜎 = 𝑌%

𝜎 = 𝑌′

Elastic-plastic with linear hardening (virtual experiments)

𝜎 = 𝑌%

𝜎 = 𝑌′

Strain-hardening:
𝑌 = 𝑌 𝜀)$

𝜀)$

𝑡

𝑑𝜀
𝑑𝑡
= 𝑐 .𝐻 𝜎 − 𝑌$ −

𝑌% − 𝑌$

𝑎
𝜀!"(𝑡) +

1
𝐸
𝑑𝜎
𝑑𝑡

𝑑𝜀
𝑑𝑡
= 𝑐 .𝐻 𝜎 − 𝑌$ −

𝑌% − 𝑌$

𝑎
𝜀(𝑡) − 𝜀#"(𝑡) +

1
𝐸
𝑑𝜎
𝑑𝑡

𝑑𝜀
𝑑𝑡
= 𝑐 .𝐻 𝜎 − 𝑌$ −

𝑌% − 𝑌$

𝑎
𝜀(𝑡) − 7

$

& 1
𝐸
𝑑𝜎
𝑑𝑡
𝑑𝑡 +

1
𝐸
𝑑𝜎
𝑑𝑡

→ 𝑌 = 𝑌& +
𝑌* − 𝑌&

𝑎 𝜀)$

𝑎

𝑑𝜀
𝑑𝑡
= 𝑐 .𝐻 𝜎 − 𝑌$ − 𝑘 𝜀(𝑡) − 7

$

& 1
𝐸
𝑑𝜎
𝑑𝑡
𝑑𝑡 +

1
𝐸
𝑑𝜎
𝑑𝑡



Simulation using Google spread sheet

You’ll need to create your own 
(custom) function to use g𝐻. 

This site tells you how to create a custom function
https://developers.google.com/apps-script/guides/sheets/functions

I wrote my own as below:

https://developers.google.com/apps-script/guides/sheets/functions


Problem 1) 

• Tensile a rigid-plastic body with the initial length of 
10 in the rate of 

for 10 seconds.
• The body has the elastic modulus of 200,000 MPa 

and Y as 150 MPa.

𝑑𝑙
𝑑𝑡 = 0.001

𝑚𝑚
𝑠𝑒𝑐



To solve elasto-plastic problem with tensors…
• You’ll need a special algorithm
• A most common (and basic) algorithm is ‘return-mapping’:

1. At first, assume that the strain increment (Δ𝜀) is purely elastic 
(i.e., Δ𝜀!" = Δ𝜀), and use Hooke’s law to obtain stress 
increment (Δ𝜎 = EΔ𝜀!").

2. If stress + stress increment (𝜎 + Δ𝜎) does not meet yield 
criterion (i.e., 𝜙 𝜎 + Δ𝜎 < 𝑌), you are safe with this 
assumption and you are all set. (fin.)

3. If stress + stress increment (𝜎 + Δ𝜎) gives stress level that is 
higher than ‘yield surface’ (i. e. , 𝜙 𝜎 + Δ𝜎 > 𝑌), your 
assumption is wrong and iteratively reestimate elastic strain 
increment (thus plastic strain increment since Δ𝜀 = Δ𝜀#" +
Δ𝜀!") until the condition 𝜙 𝜎 + Δ𝜎 = 𝑌 is satisfied.
• For this one, you’ll need a numerical iteration (such as Newton-

Raphson).

• There can be different algorithms which can replace the 
above algorithm. (Multiple solutions for a question)



Yield criterion with stress tensor (not scalar)

• In order to use tensorial quantities and apply the 
aforementioned method, we’ll need to adjust a few 
assumptions.
• The use of Heaviside like function for yield criterion

g𝐻 𝜎 − 𝑌 → g𝐻 𝝈, 𝑌 . g𝐻 𝜎!" , 𝑌 .

We cannot just subtract 𝜎!" − 𝑌:      note that 𝜎!" is a tensor, while 𝑌 is a scalar quantity.

We introduce a scalar function, called the yield function.
Yield criterion is described as a function of 𝜎!" (two free indices)
We introduce a scalar function, called the yield function.
Yield criterion is described as a function of 𝜎!" (two free indices)

𝜙 = 𝜙 𝜎!" and Let’s use 𝜙 to see if yield condition is met (𝜙 = 𝑌) or not (𝜙 < 𝑌).



Strain-hardening with stress, strain tensors 
(not scalars)
• One use length of vector to quantify the ‘size’ of a vector.

• Similarly, we use equivalent scalar quantities as a (sort of) measure for sizes 
pertaining to stress and strain tensors.

• The equivalent scalar quantity for stress tensor is simply called ‘equivalent stress’, 
and the same is applied to strain tensor (’equivalent strain’). 

• There are a few types of equivalent quantities. We’ll use only von Mises quantity.

• The definition of equivalent strain is not straightforward. We’ll have to determine 
the amount of plastic work done to the material that is under the given stress 𝜎!"
(thus providing us the above equivalent stress tensor).

o𝜎#$ =
1
2 σ%% − σ&& & + σ&& − σ'' & + σ'' − σ%% & + 6 σ%&& + σ&'& + σ%'&

(.*



Plastic work done
• Apparently, plasticity is non-linear, the work done for the time from 0 to t is defined 

using integration:

• 𝑤#$ 𝑡 = 𝑤#$ 𝑡 = 0 + ∫%
& 𝑑𝑤

• 𝑑𝑤#$ = 𝝈: 𝑑𝜺#$ = 𝜎!"𝑑𝜀!"
#$ (two dummy indices 𝑖, 𝑗)

• We postulate the work done calculated by stress and strain tensor (as done above) 
should be the same as the one calculated by the equivalent stress, equivalent strain.

• The	above	postulation	is	expressed	as	below:

• 𝑑𝑤#$ = 𝜎!"𝑑𝜀!"
#$ = 𝜎'(𝑑𝜀'( → 𝑑𝜀'( =

)&'*+&'
()

*)*+

• For materials without previous deformation, the above can be written as:

𝜀'( 𝑡 = I
%

&𝝈: 𝑑𝜺#$

𝑑𝜎'(

𝜀#$ 𝑡 = 𝜀#$ 𝑡 = 0 + `
(

+
𝑑𝜀#$ = 𝜀#$ 𝑡 = 0 + `

(

+ 𝜎!"𝑑𝜀!"
,-

𝑑𝜎#$



Strain hardening?

• Say, your material obeys the Hollomon equation,

𝜎 = 𝑌( + 𝐾.𝜀/

𝝈 = 𝑌( + 𝐾.𝜺/ not possibly ; The mathematical operation of ‘exponential’ is not available.

𝜎#$ = 𝑌( + 𝐾. 𝜀#$ /; Instead of using the tensors, we use ‘equivalent’ quantities (that are scalars).

• In case your material obeys linear hardening:
𝜎JK = 𝑌L + 𝐾𝜀JK



Now, let’s look at the constitutive model again

𝑑𝜺
𝑑𝑡

= 𝑐 .𝐻 𝝈 − 𝑌$ − 𝑘 𝜺(𝑡) − 7
$

& 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡 +

1
𝐸
:
𝑑𝝈
𝑑𝑡

Linear strain hardening: 𝜎#$ = 𝐾.𝜀#$ should somehow replace Y( + 𝑘 𝜀(𝑡) − ∫(
+ %
0
12
1+
𝑑𝑡 ; 

Since yield stress increases as more plastic deformation is applied.

𝜎 − 𝑌( − 𝑘 𝜀 𝑡 − `
(

+ 1
𝐸
𝑑𝜎
𝑑𝑡
𝑑𝑡

𝑐 should be somehow replaced with a tensorial quantity similar to  1𝜺
'(

1+
, for now,

Let’s replace 𝑐 with 45
1+

𝜺,- and 𝑑𝜆 is differential form of a scalar quantity that is 
a function of plastic strain 𝜺,-.

→ 𝜙 𝝈 − 𝑌( − 𝜎#$(𝜀#$) 𝜀#$ 𝑡 = `
(

+𝝈: 𝑑𝜺
𝑑𝜎#$



Now, let’s look at the constitutive model again

𝑑𝜺
𝑑𝑡

= 𝑐 .𝐻 𝝈 − 𝑌$ − 𝑘 𝜺(𝑡) − 7
$

& 1
𝔼
:
𝑑𝝈
𝑑𝑡
𝑑𝑡 +

1
𝔼
:
𝑑𝝈
𝑑𝑡

Linear strain hardening: 𝜎,- = 𝑌. + 𝐾/𝜀,- should somehow replace Y. + 𝑘 𝜺(𝑡) − ∫.
0 1
𝔼 :

3𝝈
30 𝑑𝑡 ; Since 

yield stress increases as more plastic deformation is applied.

𝝈 − 𝑌( − 𝑘 𝜺 𝑡 − `
(

+ 1
𝔼 :
𝑑𝝈
𝑑𝑡 𝑑𝑡

𝑐 should be somehow replaced with a tensorial quantity similar to  1𝜺
'(

1+
, for now,

Let’s replace 𝑐 with 1𝜺
'(

1+
as 𝜺 = 𝜺,- + 𝜺#-.   (→ 1𝜺

1+
= 1𝜺'(

1+
+ 1𝜺)(

1+
)

→ 𝜙 𝝈 − 𝑌( − 𝜎#$(𝜀#$) 𝜀#$ 𝑡 = `
(

+𝝈: 𝑑𝜺
𝑑𝜎#$

𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
.𝐻 𝜙 𝝈 − 𝑌$ − 𝐾%𝜀#' +

1
𝔼
:
𝑑𝝈
𝑑𝑡



Finding unknown plastic strain
𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
.𝐻 𝜙 𝝈 − 𝑌$ − 𝐾%𝜀#' +

1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
.𝐻 𝜙 𝝈 − 𝑌$ − 𝐾%𝜀#' +

1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
+
1
𝔼
:
𝑑𝝈
𝑑𝑡

𝑑𝜺,-

𝑑𝑡 ? ?
Let’s	postulate	Hill’s	idea	(associated	flow	rule)

𝑑𝜺,-

𝑑𝑡 =
𝑑𝜀#$

𝑑𝑡
𝜕𝜙 𝝈
𝜕𝝈

If	we	use	von	Mises	yield	criterion:

𝑑𝜀56
78

𝑑𝑡
=
𝑑𝜀,-

𝑑𝑡

𝜕 1
2 σ11 − σ99 9 + σ99 − σ:: 9 + σ:: − σ11 9 + 6 σ199 + σ9:9 + σ1:9

..<

𝜕𝜎56

If	we	use	von	Mises	yield	criterion:

𝑑𝜀56
78

𝑑𝑡
=
𝑑 ∫.

0𝝈: 𝑑𝜺
𝑑𝜎,-
𝑑𝑡

𝜕 1
2 σ11 − σ99 9 + σ99 − σ:: 9 + σ:: − σ11 9 + 6 σ199 + σ9:9 + σ1:9

..<

𝜕𝜎56



Yet, another example with scalars

If you are not yet familiar with 
vector (tensor) algebra and 
numerical analysis, just feel how 
much mathematics are involved …



Problem: stretching an elasto-perfect-plastic rod 

For the case of the current 
’scalar’ example, 

𝜀#$ = 𝜀, 𝜎#$ = 𝜎

𝑑𝑙
𝑑𝑡
= 1

𝑙 𝑡 = 0 = 𝑙(

Let.s say, your yield function 𝜙(𝜎) is
𝜙 𝜎 = 𝜎&

Your yield criterion:
𝜙 𝜎 = 𝜎& = 100

Say, your material yield property, 𝑌( = 100

Your  yield function gives
𝑑𝜙 𝜎
𝑑𝜎 = 1

and
𝜙 𝜎 = 100 = 100 satisfies yield condition

𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
.𝐻 𝜙 𝝈 − 𝑌$ +

1
𝔼
:
𝑑𝝈
𝑑𝑡

Perfect-plastic (no hardening; 𝑌( is constant)

with associated flow rule:  16
)*

1+
78 𝝈
7𝝈



Elastic predictor and corrector algorithm

𝑑𝑙
𝑑𝑡 = 𝑣

𝑙 𝑡 = 0 = 𝑙(

Δ𝑙 = Δ𝑡×𝑣

While time increment is Δ𝑡
Δ𝜀 = :-

-

Initially	assuming	that	all	strain	is	elastic

Δ𝜎 = 𝔼Δ𝜀 = 𝔼
Δ𝑙
𝑙

Stress	is	updated:
𝜎(/<%) = 𝜎(/) + Δ𝜎
𝜎(/<%) = 𝜎(/) + 𝔼Δ𝜀

= 𝜎(/) + 𝔼
Δ𝑙
𝑙

Check	if	𝜎(/<%) really	gives	
only	elastic	contribution

𝜙(𝜎(/<%)) < 𝑐 or 𝜙 𝜎(/<%) = 𝑐 or 𝜙(𝜎(/<%)) > 𝑐

Correcting elastic strain Δ𝜎 = 𝔼(Δ𝜀 − Δ𝜀,-)

You are correct about the strain 
decomposition, let’s move on to next 
time increment (end)

Plasticity update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

Δ𝜀 = Δ𝜀#- + Δ𝜀,-



Elastic predictor and corrector algorithm
Δ𝑙 = Δ𝑡×𝑣

Initially	assuming	that	all	strain	is	elastic

Δ𝜎 = 𝔼Δ𝜀 = 𝔼
Δ𝑙
𝑙

Find	the	stress	corresponding	to	the	
current	stress	increment
𝜎(/<%) = 𝜎(/) + Δ𝜎

Check	if	𝜎(/<%) is	inside,	on	or	over	the	yield	criterion
𝜙 𝜎(/<%) < 𝑌( or 𝜙 𝜎(/<%) = 𝑌( or 𝜙 𝜎(/<%) > 𝑌(

Plastic strain update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

Correcting elastic strain 
Δ𝜀#- = Δ𝜀 − Δ𝜀,-

That gives new stress increment
Δ𝜎 = 𝔼(Δ𝜀 − Δ𝜀,-)

(adjust strain decomposition

If 𝜙 𝜎(/<%) ≤ 𝑌(
𝜎(/<%) is consistent with our theory.
Let’s move on to next time increment



𝐹 Δ𝜆 = 𝜙 Δ𝜀#$ − (𝑌(), find Δ𝜀#$ that gives 𝐹 Δ𝜀#$ = 0 That’s exactly what 
NR can do.

𝑑𝐹 Δ𝜀#$

𝑑Δ𝜀#$ =
𝑑 𝜙 𝜎 − 𝑌(

𝑑Δ𝜀#$ =
𝑑𝜙 𝜎
𝑑Δ𝜀#$ =

𝑑𝜙 𝜎
𝑑𝜎

𝑑𝜎
𝑑Δ𝜀#$ = 1×

𝑑(𝜎(/) + Δ𝜎)
𝑑Δ𝜀#$ =

𝑑Δ𝜎
𝑑Δ𝜀#$

=
𝑑𝔼 Δ𝜀 − Δ𝜀,-

𝑑Δ𝜀#$ ≈ 𝔼
𝑑Δ𝜀,-

𝑑Δ𝜀#$ = 𝔼 sgn Δ𝜀,-

Δ𝜀(><%)
#$ = Δ𝜀(>)

#$ −
𝐹 Δ𝜀 >

#$

−𝜎𝔼 sgn Δ𝜀,-

Plastic strain update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

sgn Δ𝜀,- = 1 if Δ𝜀,- ≥ 0
sgn Δ𝜀,- = −1 if Δ𝜀,- < 0

Caution! Need validation



Cheat sheet



Problem: stretching an elasto-plastic rod with 
linear hardening

For the case of the current 
’scalar’ example, 

𝜀#$ = 𝜀, 𝜎#$ = 𝜎

𝑑𝑙
𝑑𝑡
= 1

𝑙 𝑡 = 0 = 𝑙(

Let.s say, your yield function 𝜙(𝜎) is
𝜙 𝜎 = 𝜎&

Your yield criterion:
𝜙 𝜎 = 𝜎& = 100

Say, your material yield property, 𝑌(

Your  yield function gives
𝑑𝜙 𝜎
𝑑𝜎 = 1

and
𝜙 𝜎 = 100 = 100 satisfies yield condition

𝑑𝜺
𝑑𝑡

=
𝑑𝜺!"

𝑑𝑡
.𝐻 𝜙 𝝈 − (𝑌$ + 𝑘𝜀#') +

1
𝔼
:
𝑑𝝈
𝑑𝑡

Perfect-plastic (no hardening; 𝑌( is constant)

with associated flow rule:  16
)*

1+
78 𝝈
7𝝈



Elastic predictor and corrector algorithm

𝑑𝑙
𝑑𝑡 = 𝑣

𝑙 𝑡 = 0 = 𝑙(

Δ𝑙 = Δ𝑡×𝑣

While time increment is Δ𝑡
Δ𝜀 = :-

-

Initially	assuming	that	all	strain	is	elastic

Δ𝜎 = 𝔼Δ𝜀 = 𝔼
Δ𝑙
𝑙

Stress	is	updated:
𝜎(/<%) = 𝜎(/) + Δ𝜎
𝜎(/<%) = 𝜎(/) + 𝔼Δ𝜀

= 𝜎(/) + 𝔼
Δ𝑙
𝑙

Check	if	𝜎(/<%) really	gives	
only	elastic	contribution

𝜙(𝜎(/<%)) < 𝑐 or 𝜙 𝜎(/<%) = 𝑐 or 𝜙(𝜎(/<%)) > 𝑐

Correcting elastic strain Δ𝜎 = 𝔼(Δ𝜀 − Δ𝜀,-)

You are correct about the strain 
decomposition, let’s move on to next 
time increment (end)

Plasticity update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

Δ𝜀 = Δ𝜀#- + Δ𝜀,-



Elastic predictor and corrector algorithm
Δ𝑙 = Δ𝑡×𝑣

Initially	assuming	that	all	strain	is	elastic

Δ𝜎 = 𝔼Δ𝜀 = 𝔼
Δ𝑙
𝑙

Find	the	stress	corresponding	to	the	
current	stress	increment
𝜎(/<%) = 𝜎(/) + Δ𝜎

Check	if	𝜎(/<%) is	inside,	on	or	over	the	yield	criterion
𝜙 𝜎(/<%) < 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)
or 𝜙 𝜎(/<%) = 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)
or 𝜙 𝜎(/<%) > 𝑌( + 𝑘(𝜀(/)

#$ + Δ𝜀#$)

Plastic strain update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

Correcting elastic strain 
Δ𝜀#- = Δ𝜀 − Δ𝜀,-

That gives new stress increment
Δ𝜎 = 𝔼(Δ𝜀 − Δ𝜀,-)

(adjust strain decomposition

If 𝜙 𝜎(/<%) ≤ 𝑌( + 𝑘(𝜀(/)
#$ + Δ𝜀#$)

𝜎(/<%) is consistent with our theory.
Let’s move on to next time increment



𝐹 Δ𝜆 = 𝜙 Δ𝜀#$ − 𝑌( + 𝑘 𝜀 /
#$ + Δ𝜀#$ , find Δ𝜀#$ that gives 𝐹 Δ𝜀#$ = 0

That’s exactly what 
NR can do.

𝑑𝐹 Δ𝜀,-

𝑑Δ𝜀,-
=
𝑑 𝜙 𝜎 − 𝑌. + 𝑘 𝜀 =

,- + Δ𝜀,-

𝑑Δ𝜀,-
=
𝑑𝜙 𝜎
𝑑Δ𝜀,-

− 𝑘 =
𝑑𝜙 𝜎
𝑑𝜎

𝑑𝜎
𝑑Δ𝜀,-

− 𝑘

= 1×
𝑑(𝜎(=) + Δ𝜎)

𝑑Δ𝜀,- − 𝑘 =
𝑑Δ𝜎
𝑑Δ𝜀,- − 𝑘 =

𝑑𝔼 Δ𝜀 − Δ𝜀78

𝑑Δ𝜀,- − 𝑘 ≈ 𝔼
𝑑Δ𝜀78

𝑑Δ𝜀,- − 𝑘 = 𝔼 sgn Δ𝜀78 − 𝑘

Δ𝜀(><%)
#$ = Δ𝜀(>)

#$ −
𝐹 Δ𝜀 >

#$

−𝜎𝔼 sgn Δ𝜀,- + 𝑘

Plastic strain update

Δ𝜀,- = Δ𝜀#$
𝜕𝜙
𝜕𝜎

sgn Δ𝜀,- = 1 if Δ𝜀,- ≥ 0
sgn Δ𝜀,- = −1 if Δ𝜀,- < 0

Caution! Need validation



Google spreadsheet example on 
elasticity-linear plasticity (scalar)

https://docs.google.com/spreadsh
eets/d/1ithHT-
f_mQIyv9Vx2fBt_o6bMWRq8Hlb0
N5VXrw2ySA/edit?usp=sharing

function decompose_lh(s,E,y,de,eeq,k){
// elasticity - plasticity with linear hardening
// initial guess with assuming pure elasticity
deq=0
del=de-deq
// F=yield(s+E*del)-y
tolerance=1e-9
F=2*tolerance
kount=0
while(F>tolerance){
// calculate F
F=yield(s+E*del)-(y+k*(eeq+deq))
deq=deq-F/(-E)//*sign(1,de)
if (de<0) {
deq=deq*-1
}
del=de-deq
kount=kount+1
if (kount>20){
throw 'too many iterations', kount
}
} 
return del
}

https://docs.google.com/spreadsheets/d/1ithHT-f_mQIyv9Vx2fBt_o6bMWRq8Hlb0N5VXrw2ySA/edit?usp=sharing


Or, Jupyter notebook (Python)

https://gist.github.com/youngung/07615666a85d663eae9cbb157fa33e38

https://gist.github.com/youngung/07615666a85d663eae9cbb157fa33e38

