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Intro
• 재료에가해질수있는힘은

• 1) 재료표면에가해진 ‘접촉’에의해전달되는힘 (surface force)
• 2) 접촉하지않고서전달되는힘 (body force)

• 중력, 전자기력등

• 우리가 ‘정역학’에서다루는재료의 ‘운동’상태혹은 ‘변형’은모두평형
상태인 ‘힘’들에의해서나타난다. (평형상태가아닌힘에의해발생하는
현상은다루지않음)

• 일반적인소성가공공정에서재료는 surface force에의해서만힘을전달
받고변형하며, body force에의한소성가공법은매우특별한경우에
한정되어있다.

Source:AP&T, (https://www.aptgroup.com)

Magnetic pulse forming
https://youtu.be/rBXXBlP9qIE

https://www.bmax.com/technology/magnetic-pulse-forming/



Stamping process for mass production

TESLA Stamping line: https://youtu.be/gkjn9bogLSM



Force
Force is a vector quantity, so that

𝒇 = 𝑓!𝐞! + 𝑓"𝐞" + 𝑓#𝐞#

Force equilibrium condition:
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Force and moment
𝒎 = 𝒇×𝒙 with 𝒙 being moment arm

Moment of a force is a measure of its tendency to cause a body to ‘rotation’ about a specific 
point or axis.

𝒎8 = 𝑓7𝑥9𝐞7×𝐞9 = 𝑓7𝑥9𝜖798𝐞8
= 𝐞8&

7

&
9

𝑓7𝑥9𝜖798

= 𝐞8 𝑓!𝑥"𝜖!"8 + 𝑓!𝑥#𝜖!#8 + 𝑓"𝑥!𝜖"!8 + 𝑓"𝑥#𝜖"#8 + 𝑓#𝑥!𝜖#!8 + 𝑓#𝑥"𝜖#"8

𝒎! = 𝐞! 𝑓!𝑥"𝜖!"! + 𝑓!𝑥#𝜖!#! + 𝑓"𝑥!𝜖"!! + 𝑓"𝑥#𝜖"#! + 𝑓#𝑥!𝜖#!! + 𝑓#𝑥"𝜖#"!
= 𝐞! 𝑓"𝑥# − 𝑓#𝑥"

𝒎" = 𝐞" 𝑓!𝑥"𝜖!"" + 𝑓!𝑥#𝜖!#" + 𝑓"𝑥!𝜖"!" + 𝑓"𝑥#𝜖"#" + 𝑓#𝑥!𝜖#!" + 𝑓#𝑥"𝜖#""
= 𝐞" −𝑓!𝑥# + 𝑓#𝑥!

𝒎# = 𝐞# 𝑓!𝑥" − 𝑓"𝑥!

𝑚$ = 0 (moment equilibrium; 𝑖 is a free index)



응력텐서 (stress tensor) 

•재료에전달되는 ‘힘’을 ‘세기물리량’으로
정량화하여나타내는데 ‘응력’이라는물리량을
사용한다.
•응력은 ‘텐서’ 물리량이다.
•응력텐서의정의를자세히알아보자.
• 힘평형 (force equilibrium)
• 응력벡터 (stress vector)



힘벡터와응력벡터

• 응력벡터(혹은 traction이라일컫는다)란?  𝒕 = lim
45→6

𝒇
45

,   

• In SI unit system, unit of  7
45
=

89 %
&'

:' = ;
:' = 𝑃𝑎

Caution1 : 변형률은 unit이없지만, 응력은단위가있다.
Caution2: 금속에작용하는응력은주로MPa가쓰이며, 여기서M은 Mega이며뜻은 10:이다.

힘은크기물리량;응력은세기물리량
풍선에게동일한힘을손바닥으로전달할때와
바늘끝으로전달할때풍선에게나타날효과가
매우다른것을예상할수있다. 힘이작용하는
면적의차이에의해서나타나는효과라볼수있다.



The graphical illustration to understand the 
definition of stress vector (traction vector)

외부의 surface force
재료내부에 force field

𝒇 𝑥, 𝑦, 𝑧
힘평형을이룬채로

force field 발달

좀더빼곡히나타낸
힘벡터분포

𝒕 = lim
()→+

𝒇
Δ𝑆

𝒕: normal이 𝒏인면에
작용하는응력벡터



The graphical gist of it

𝒕 = lim
()→+

𝒇
Δ𝑆

𝒏법선 (normal)

𝒕 =
𝑑𝒇
𝑑𝑆

𝑡$ =
𝑑𝑓$
𝑑𝑆



Mathematical description (both algebraic and geometrical)

𝒕 = lim
()→+

𝒇
Δ𝑆 𝒕 =

𝑑𝒇
𝑑𝑆

𝑡$ =
𝑑𝑓$
𝑑𝑆

The infinitesimal surface that approaches to zero (i.e.,  Δ𝑆 → 0)

(Coupled) Force vectors acting on that infinitesimal surface

𝒏

Plane normal;  It is a unit vector such that 𝒏 = 1.

𝒕 = 𝝈 ⋅ 𝒏
Stress tensor (𝝈) on that location (   ) linearly transforms the normal 𝒏
to the traction vector 𝒕

𝑡!
𝑡"
𝑡#

= 𝝈 ⋅
𝑛!
𝑛"
𝑛#

𝑡!
𝑡"
𝑡#

=
𝜎!! 𝜎!" 𝜎!#
𝜎"! 𝜎"" 𝜎"#
𝜎#! 𝜎#" 𝜎##

𝑛!
𝑛"
𝑛#

𝑡$ = 𝜎$,𝑛,

물질내고정된한점에서의
traction은그점을통과하는
면의방향에따라달라진다. 
즉 𝒕는 𝒏에따라달라진다.

𝒕-𝒏*
𝒕-𝒏+



(c)
(b)

(a)

Mathematical description (both algebraic and geometrical)

(a)
(b)

(c)

Normal component

Tangential component

𝐞!
𝐞"

𝐞#

각면에＇누워서’ (tangential) 작용하는성분을다시 𝐞!에 projection 시켜 shear 
term은 2개, normal component는 1개가각면마다있음.



Let’s say by 𝒕𝒏 =
/𝒇
/)

Here, we denote traction vector 𝒕 acting on 
infinitesimal surface 𝑑𝑆 with the normal 𝒏 as 𝒕𝒏

Three	traction vectors	on	three	planes	
𝒕𝐞* = 𝜎!!, 𝜎!", 𝜎!#
𝒕𝐞+ = 𝜎!!, 𝜎!", 𝜎!#
𝒕𝐞, = 𝜎!!, 𝜎!", 𝜎!#

𝒕𝐞𝒊? Traction vector 𝒕 acting on infinitesimal surface 𝑑𝑆 with the basis 
normal 𝐞$ (note that 𝑖 is a free index, it could be 1 or 2 or 3) 

𝒕 = 𝝈 ⋅ 𝒏

𝑡!
𝑡"
𝑡#

=
𝜎!! 𝜎!" 𝜎!#
𝜎"! 𝜎"" 𝜎"#
𝜎#! 𝜎#" 𝜎##

𝑛!
𝑛"
𝑛#

𝑡$ = 𝜎$,𝑛,

𝒕𝐞* !
𝒕𝐞* "
𝒕𝐞* #

=
𝜎!! 𝜎!" 𝜎!#
𝜎"! 𝜎"" 𝜎"#
𝜎#! 𝜎#" 𝜎##

𝐞! !
𝐞! "
𝐞! #

𝒕𝐞* = 𝝈 ⋅ 𝐞! ?

𝒕𝐞* !
𝒕𝐞* "
𝒕𝐞* #

=
𝜎!! 𝜎!" 𝜎!#
𝜎"! 𝜎"" 𝜎"#
𝜎#! 𝜎#" 𝜎##

1
0
0

𝒕𝐞* !

𝒕𝐞* "
𝒕𝐞* #

=
𝜎!!
𝜎"!
𝜎#!

Caution: 𝜎$, = 𝜎,$



Cauchy stress tensor

• Causchy’s idea: Traction vectors on three 
independent (perpendicular) planes 
pertaining to a point would suffice to 
provide the stress state of that point.
• Components of traction vectors on each of 

these three planes provide us the Cauchy 
stress components, which is sufficient to 
describe any arbitrary stress state. (No 
more than three planes!)
• While there are a number of strain 

measures … 
Augustin-Louis Cauchy



Cauchy’s Tetrahedron (사면체)

𝒏𝒏

𝐞"

𝐞!

𝐞# • 𝐞7: basis vectors (𝑖 is free)
• 𝒕𝐞!: Traction acting on the plane ⊥ 𝐞7
• Δ𝑆𝒏: Area	of	A,B,C	삼각형
• Δ𝑆𝐞!: surface of the plane ⊥ 𝐞7, which can
be obtained by Δ𝑆𝐞! = ΔS𝒏 𝒏 ⋅ 𝐞7 = ΔS𝒏 𝑛7
(Notice 𝑛7 is not in bold-face)
• 𝑏7 is the body force
• 𝑚 = !

#𝜌ℎΔ𝑆𝒏

𝒕𝒏Δ𝑆𝒏−𝒕𝐞+Δ𝑆𝐞+

−𝒕𝐞*Δ𝑆𝐞*

−𝒕𝐞,Δ𝑆𝐞,

Force balance along 𝐞"?
Check  𝐹" = 𝑚𝑎" (net 𝐹")

𝐞" ⋅ ∑𝑭 =
1
3𝜌ℎΔ𝑆𝒏𝒂 ⋅ 𝐞"

→ 𝜌𝒃 ⋅ 𝐞"ΔV + 𝒕𝒏Δ𝑆𝒏 ⋅ 𝐞" + Q
!

−𝒕𝐞!Δ𝑆𝐞! ⋅ 𝐞" =
1
3𝜌ℎΔ𝑆𝒏𝑎"

→
𝜌𝑏"ℎΔ𝑆𝒏

3
+ 𝒕𝒏 ⋅ 𝐞"Δ𝑆𝒏 − ΔS𝒏 Q

!

𝒕𝐞!𝑛! ⋅ 𝐞" =
1
3
𝜌ℎΔ𝑆𝒏𝑎"

𝐿𝐻𝑆 →
𝜌𝑏"ℎΔ𝑆𝒏

3 + 𝒕𝒏 ⋅ 𝐞"Δ𝑆𝒏 − ΔS𝒏 Q
!

𝑛!𝝈 ⋅ 𝐞! ⋅ 𝐞"

(𝐿𝐻𝑆) →
𝜌𝑏"ℎΔ𝑆𝒏

3
+ 𝒕𝒏 ⋅ 𝐞"Δ𝑆𝒏 − ΔS𝒏 𝑛"𝝈 ⋅ 𝐞" + 𝑛%𝝈 ⋅ 𝐞% + 𝑛&𝝈 ⋅ 𝐞& ⋅ 𝐞"

(𝐿𝐻𝑆) →
𝜌𝑏"ℎΔ𝑆𝒏

3 + 𝒕𝒏 ⋅ 𝐞"Δ𝑆𝒏 − ΔS𝒏 𝑛"𝝈 ⋅ 𝐞" ⋅ 𝐞" + 𝑛%𝝈 ⋅ 𝐞% ⋅ 𝐞" + 𝑛&𝝈 ⋅ 𝐞& ⋅ 𝐞"

𝐹" = 𝑚𝑎" →
𝜌𝑏"ℎΔ𝑆𝒏

3
+ 𝒕𝒏 ⋅ 𝐞"Δ𝑆𝒏 − ΔS𝒏 𝑛"𝜎"" + 𝑛%𝜎%" + 𝑛&𝜎&" =

1
3
𝜌ℎΔ𝑆𝒏𝑎"

𝒕 = 𝝈 ⋅ 𝒏
𝑡$ = 𝜎$,𝑛,
𝒕𝐞* = 𝝈 ⋅ 𝐞!

Δ𝑆𝒏 𝜌𝒃ΔV



Cauchy’s Tetrahedron (사면체)

Force balance along 𝐞!?
Check  𝐹! = 𝑚𝑎! (net 𝐹!)

𝐹! = 𝑚𝑎! →
𝜌𝑏!ℎΔ𝑆𝒏

3
+ 𝒕𝒏 ⋅ 𝐞!Δ𝑆𝒏 − ΔS𝒏 𝑛!𝜎!! + 𝑛"𝜎"! + 𝑛#𝜎#! =

1
3
𝜌ℎΔ𝑆𝒏𝑎!

With ℎ → 0

→ 𝒕𝒏 ⋅ 𝐞! − 𝑛!𝜎!! + 𝑛"𝜎"! + 𝑛#𝜎#! =
1
3
𝜌ℎ𝑎!

𝒕𝒏 ⋅ 𝐞! =&
9

𝜎9!𝑛9

Let’s notice that 𝒕𝒏 ⋅ 𝐞! = 𝒕𝒏 ! and maybe it’s better for us to shorten the notation 𝒕𝒏 ! simply to 𝑡!

• 𝐞7: basis vectors
• 𝒕𝐞!: Traction acting on the plane ⊥ 𝐞7
• Δ𝑆𝒏: Area	of	A,B,C	삼각형
• Δ𝑆𝐞!: surface of the plane ⊥ 𝐞7, which can
be obtained by Δ𝑆𝐞! = ΔS𝒏 𝒏 ⋅ 𝐞7 = ΔS𝒏 𝑛7
(Notice 𝑛7 is not in bold-face)
• 𝑏7 is the body force
• 𝑚 = !

#𝜌ℎΔ𝑆𝒏



Cauchy’s Tetrahedron (사면체) (Advanced)
A case without body force

V
2
∇𝜙𝑑𝑉 = V

)
𝒏𝜙𝑑𝑆

• Say, 𝜙 is a quantity that is transferable (like heat, momentum, solute in 
solution etc.), transfer-in and -out should be met if equilibrium; 

• In equlibrium (such as heat equilibrium or force equilibrium), 𝜙 =
𝑐𝑜𝑛𝑠𝑡.

• Therefore, (𝒏\ denotes normal of surface S)

b
]
∇𝜙𝑑𝑉 = b

\
𝒏\𝜙𝑑𝑆 → 0 = b

\
𝒏\𝜙𝑑𝑆 → 0 = b

\
𝒏\𝑑𝑆

• For the case of this tetrahedron we have

b
\
𝒏\𝑑𝑆 = 0 → 𝒏Δ𝑆𝒏 − 𝐞!Δ𝑆𝐞" − 𝐞"Δ𝑆𝐞# − 𝐞#Δ𝑆𝐞$ = 0

→ 𝒏ΔS𝐧 =&
7

𝐞7Δ𝑆𝐞! → 𝒏ΔS𝐧 ⋅ 𝐞8 = 𝐞8 ⋅&
7

𝐞7Δ𝑆𝐞!

→ 𝑛8Δ𝑆𝒏 =&
7

𝐞8 ⋅ 𝐞7Δ𝑆𝐞! = Δ𝑆𝐞% → 𝑛7Δ𝑆𝒏 = Δ𝑆𝐞!

→ Force equilibrum: 𝒕𝒏Δ𝑆𝒏 −&
7

𝒕𝐞!𝑛7Δ𝑆𝒏 = 0 → 𝒕𝒏 −&
7

𝒕𝐞!𝑛7 = 0

𝒕𝒏 =&
7

𝒕𝐞!𝑛7 → 𝒕𝒏 = 𝒕𝐞"𝑛! + 𝒕𝐞#𝑛" + 𝒕𝐞$𝑛#

→ 𝒕𝒏 = 𝒏 ⋅ 𝐞! 𝒕𝐞" + 𝒏 ⋅ 𝐞" 𝒕𝐞# + 𝒏 ⋅ 𝐞# 𝒕𝐞$
Remember: 𝑆𝐞! = ΔS𝒏 𝒏 ⋅ 𝐞7 = ΔS𝒏 𝑛7

Force	equilibrium:

𝒕𝒏Δ𝑆𝒏 −\
$

𝒕𝐞.Δ𝑆3. = 0



Cauchy’s Tetrahedron (사면체) (Advanced)
A case without body force

𝒕𝒏 = 𝒏 ⋅ 𝐞! 𝒕𝐞" + 𝒏 ⋅ 𝐞" 𝒕𝐞# + 𝒏 ⋅ 𝐞# 𝒕𝐞$

𝒕𝒏 7 = 𝒏 ⋅ 𝐞! 𝒕𝐞" + 𝒏 ⋅ 𝐞" 𝒕𝐞# + 𝒏 ⋅ 𝐞# 𝒕𝐞$ 7
; note the free index 𝑖

𝒕𝒏 7 = 𝒏 ⋅ 𝐞! 𝒕𝐞" 7
+ 𝒏 ⋅ 𝐞" 𝒕𝐞# 7

+ 𝒏 ⋅ 𝐞# 𝒕𝐞$ 7

Notice that both 𝒕𝒏 7 and 𝒕𝐞% 7
(k is free index) are ‘scalars’ – they for 

each index represent each component, as in below,

so that 
𝒕𝒏 7 = 𝒏 ⋅ 𝐞! 𝒕𝐞" 7

+ 𝒏 ⋅ 𝐞" 𝒕𝐞# 7
+ 𝒏 ⋅ 𝐞# 𝒕𝐞$ 7

= 𝒏 ⋅ 𝐞!𝒕𝐞" + 𝐞"𝒕𝐞# + 𝐞#𝒕𝐞$ 7

𝒕𝒏 ⋅ 𝐞7 = 𝒏 ⋅ 𝐞!𝒕𝐞" + 𝐞"𝒕𝐞# + 𝐞#𝒕𝐞$ ⋅ 𝐞7

Remember: 𝑆𝐞! = ΔS𝒏 𝒏 ⋅ 𝐞7 = ΔS𝒏 𝑛7

Force	equilibrium:

𝒕𝒏Δ𝑆𝒏 −\
$

𝒕𝐞.Δ𝑆3. = 0

𝑐𝒂 = 𝑐𝑎$𝐞$ = 𝑎$(𝑐𝒆$)



삐



Stress tensor is symmetric

𝜎ab = 𝜎ba
Therefore,	the	below

𝒕𝒏 ⋅ 𝐞c =2
b

𝜎bc𝑛b

could be equivalently written as:

𝒕𝒏 c =2
b

𝜎cb𝑛b

And, therefore, by making use Indicial and Einstein notations, 
𝒕𝒏 a = 𝜎ab𝑛b



Proof of symmetric stress tensor



The same linear transformation 
applies to strain tensor

𝜺 ⋅ 𝒏 gives you the ‘stretched’ vector.

If you know the meaning of dot product, you’ll understand 𝜺 ⋅ 𝒏 ⋅ 𝒏 gives you a 
fractional change in length expected along 𝒏 expected as an outcome of 𝜺.



Object sliding downhill

𝐞"

𝐞!

𝐞# Points under the object is under 
the stress of 

0 0 0
0 −25 0
0 0 40

Sliding object 𝒏

30°

Q: What is the traction vector
acting on the plane?

solution:

𝒏 = 0, cos 60° , sin 60° = 0,0.5,
3
2

𝒕 = 𝝈 ⋅ 𝒏 →
0 0 0
0 −25 0
0 0 −40

0
0.5
0.866

= 0,−12.5, −34.6



Examples.
Suppose a single crystal Ni (in FCC) is subjected to a 
traction field of (100, 10, 10) MPa. 

𝐞!
𝐞"

𝐞#

Calculate the traction vector along 111 plane normal

Solution). Since, say, 𝒏 = !,!,!
!,!,!

= !
#
(1,1,1). The component of traction vector (give as 

𝒕 = 100,10,10 ), its component along n is obtained by projecting t along n such that

𝒕 ⋅ 𝒏 =
120
3



Examples.
Suppose a single crystal Ni (in FCC) is subjected to a 
traction field of (100, 10, 10) MPa. 

𝐞!
𝐞"

𝐞#

Calculate the traction vector along 1n11 plane normal

(Solution). Since, say, 𝒏 = !,!,!
!,!,!

= !
#
(1, n1, 1). The component of traction vector (given 

as 𝒕 = 100,10,10 ) along n is obtained by projecting t along n such that

𝒕 ⋅ 𝒏 =
100
3



Resolved shear stress
Suppose a single crystal Fe (in BCC) is subjected a stress of 

𝐞!
𝐞"

𝐞#

Calculate the resolved shear stress acting on system 011 1n11

(Solution). Since, say, 𝒏 = +,!,!
+,!,!

= !
"
(0,1,1). The traction vector (denoted as 𝒕) on plane 

𝒏 is

𝒕 =
2
2

20 0 0
0 20 0
0 0 0

0
1
1
=

2
2

20
0
0

In order to obtain 𝒕 component in the slip direction (denoted as 𝒃), use dot-product, such 

that 𝜏 = 𝒕 ⋅ 𝒃 = "
"

!
#

20
0
0

⋅
1
−1
1

= "
"

!
#
⋅ 20 ≅ 8.16

20 0 0
0 20 0
0 0 0



Generalized Schmid’s law

𝜏 = 𝝈 ⋅ 𝒏 ⋅ 𝒃 = 𝒃 ⋅ 𝝈 ⋅ 𝒏 = 𝒃 ⋅ 𝝈 ⋅ 𝒏 = 𝑏$𝜎$,𝑛,



Force and moment balances
• Net force acting on any portion of a body should be zero.

• Externally applied forces (die, punch and so forth) should be balanced by internal 
forces – attractions and repulsions between atoms.

* 길이가 L 이고, 지름이 D 그리고 두께가 t인
파이프의내부가압력 P를겪는다.

길이방향이 normal인면에작용하는응력성분 𝜎_은, 이러한 force balance를활용하여구할
수있다.

&
$%&'()

𝐹_)+(0 $%&'() =𝐹_
`-`) `')$$&') + 𝐹_-.,)'.+a $,')$$ = −

𝑃𝜋𝐷"

4
+ 𝜋𝐷𝑡𝜎_ = 0

−𝒛

𝒙

𝒚

→ 𝜋𝐷𝑡𝜎_ =
𝑃𝜋𝐷"

4 → 𝜎_ =
𝑃𝐷
4𝑡

\
567893

𝐹:3;9< 567893 = − 𝑃𝐷𝐿 + 2𝜎:𝑡𝐿 = 0 → 𝜎: =
𝑃𝐷
2𝑡



Force and moment balances
• 𝒎 = 𝑭×𝒙 → 𝒎! = 𝑓"𝑥#𝐞"×𝐞# = 𝑓"𝑥#𝜖"#!𝐞!

𝜎=>

Shear	stress
𝜎=>

𝒎# = 𝑓$𝑥,𝜖$,#𝐞# = 𝑓!𝑥" − 𝑓"𝑥! 𝐞#

𝐞!, 𝐞", 𝐞# ∥ x𝒓, z𝜽, x𝒛

𝒎# = 𝑡!𝐴=𝑥" − 𝑡"𝐴>𝑥! 𝐞#

= 𝜎!,𝑛,
(=)𝐴=𝑥" − 𝜎"A𝑛A

(=)𝐴>𝑥! 𝐞#


