
Examples of Einstein summation
𝑎! = 𝑏!"𝑐"𝑑" LHS 그리고 RHS 모두 𝑖만 free index; (Correctly used notation)

𝑎!𝑏" = 𝑐!#𝑑#" LHS 그리고 RHS 모두 𝑖, 𝑗가 free index; (Correctly used notation)
Index 𝑗 is repeated in 𝒄 and 𝒅.  So, Einstein Summation Convention is implied

𝑎!𝑏" = 𝑐!#𝑑#" + 𝑒!𝑓" + 𝑔!𝑝"" + 𝑞$𝑟!"

LHS has two free index 𝑖 and 𝑗. In RHS, in the third term the same 𝑗 is used as if
it is non free index; (Conflicts). Also, the fourth term has an extra index 𝑙.

When Einstein summation convention is implied, we call the index (over which 
summation is performed) dummy as it is not important what letter is given.

For instance, 𝑎!𝑏! = 𝑎#𝑏# = 𝑎$𝑏$ . . . 𝑒𝑡𝑐
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Ex)
• 3차원공간에서의물리량으로이루어진다음 expression을 Einstein	summation	
convention을사용하여나타내시오.

𝒃 = 𝒙 + 𝑪 ⋅ 𝒚

𝑪 ⋅ 𝒚은내적이며 𝑪가 2nd order tensor (3x3 matrix) 이고 𝒚는벡터이다. 따라서그결과는
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벡터 (vector) operations
• Dot product aka inner dot product (내적):

𝑑 = 𝒂 ⋅ 𝒃 = 𝒃 ⋅ 𝒂 or 𝑑 = ∑!% 𝑎!𝑏! → Einstein : 𝑑 = 𝑎!𝑏!
• Alternative form:

𝒂 ⋅ 𝒃 = 𝒂 𝒃 cos𝜃
𝜃는두벡터 (𝒂 and 𝒃) 사이의각이다. 또한두내적인다음과같이연산할수도있다.

𝒂 ⋅ 𝒃 = 𝑎&𝒊 + 𝑎'𝒋 + 𝑎(𝒌 ⋅ 𝑏&𝒊 + 𝑏'𝒋 + 𝑏(𝒌

𝒊, 𝒋, 𝒌는참조하는좌표계의세베이시스벡터(𝐞),𝐞*,𝐞%)를의미한다.

• Inner product of different basis vector leads in zero, while that of the same basis vectors 
lead to 1:    𝒊 ⋅ 𝒋 = 0 and 𝒊 ⋅ 𝒊 = 1

Either way, the dot product
amounts to ~42.27

→ 𝐞! ⋅ 𝐞" = 𝛿!" (Kronecker delta)



summary
• Nomenclature

• 굵은글씨문자 (예 𝒂)는벡터, 혹은행렬을뜻함.
• 굵지않은글씨문자는 (예 𝑎, 𝑎!, 𝑏!") 등은 scalar (혹은벡터행렬의
구성성분)를뜻함

• 벡터 𝒂의크기 (magnitude)는 |𝒂|로표기하고다음과같이정의됨
𝒂 = 𝑎^_ + 𝑎__ + 𝑎`_ a.b

• 벡터 𝒂의단위벡터는다음과같이정의됨
𝒂
𝒂

• 벡터는더하기, 빼기, dot product, cross product, double dot product, 
dyadic product 등의연산을가짐.
• 주어진좌표계의 basis vector를사용해서벡터를다음과같이
표기할수있음.

𝒂 = 𝑎^𝐞^ + 𝑎_𝐞_ + 𝑎`𝐞`
• 인덱스표기법및 Einstein 축약표기법은벡터연산을표기하는데
매우유용하며익숙해져야한다.





예제)
• Q1) 다음은 Miller index로나타낸 BCC 결정구조내의면과
방향이다: 110 , [1+10]두방향사이의끼인각은?

• Q2) 다음결정면 𝒏과방향 𝒃으로이루어진 slip system이
FCC 결정내존재할까 ?

𝒏 = 1, +1, 1
𝒃 = [1, +1, 0]

• Q3) 벡터 𝒂 = 1,−0.5,3 과 𝒄 = [1,2,0]을이용해다음
연산의답을구하시오.

𝑎c𝑏c =?

• Q4) 위 Q3)의벡터를활용하여예상되는 𝑎d𝑏c와 𝑎d𝑏d의
차이를설명하시오.



벡터 (vector) dyadic operations
• Dyadic product:

𝒂⊗ 𝒃 = 𝑎!𝐞! + 𝑎"𝐞" + 𝑎#𝐞# ⊗ 𝑏!𝐞! + 𝑏"𝐞" + 𝑏#𝐞#
where 𝐞!,𝐞",𝐞# are unit vectors along the axes 1,2,3, respectively.

𝒂⊗ 𝒃 = 𝑎!𝑏! 𝐞!⊗𝐞! + 𝑎!𝑏" 𝐞!⊗𝐞" + 𝑎!𝑏# 𝐞!⊗𝐞#
+𝑎"𝑏! 𝐞"⊗𝐞! + 𝑎"𝑏" 𝐞"⊗𝐞" + 𝑎"𝑏# 𝐞"⊗𝐞#
+𝑎#𝑏! 𝐞#⊗𝐞! + 𝑎#𝑏" 𝐞#⊗𝐞" + 𝑎#𝑏#(𝐞#⊗𝐞#)

Also equivalently,

𝒂⊗ 𝒃 =
𝑎!𝑏! 𝑎!𝑏" 𝑎!𝑏#
𝑎"𝑏! 𝑎"𝑏" 𝑎"𝑏#
𝑎#𝑏! 𝑎#𝑏" 𝑎#𝑏#

If 𝒏% and 𝒃% are slip system s consisting of  (unit) plane normal and (unit) slip direction vectors,
𝒏% ⊗𝒃% corresponds to Schmid tensor such that 𝑴% = 𝒏% ⊗𝒃% or 𝑀&$

% = 𝑛&%𝑏$% (no dummy index)
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Examples: 사물에준일(work)
•사물에준일:가해진힘벡터와이동벡터의내적

중력힘

사람이
떠받드는힘

이동
거리

사람이
떠받드는힘

이동
거리

𝑤 = 𝑭 ⋅ 𝒓 → 𝑤 𝑡 = 𝑤 0 + h
+!

+"
𝑭 ⋅ 𝑑𝒓



Schmid tensor and resolved shear stress

• 𝒏* = +,+,+
+,+,+

and 𝒃* = +,-,.+
+,-,.+

Say, the crystal is subjected to stress tensor of

𝝈 =
1 0 0
0 0 0
0 0 0

The resolved shear stress (RSS) amounts to
𝜏* = 𝝈 ⋅ 𝒏* ⋅ 𝒃* = 𝝈:𝑴* = 𝜎/0𝑀/0

*

𝜏* =
1 0 0
0 0 0
0 0 0

⋅
1
3

1
1
1

⋅
1
2

1
0
−1

=
1
6

1
0
0

⋅
1
0
−1

** Caution, direct use of miller index for crystal plane normal and direction should be careful.
Crystal coordinate system of cubic (FCC, BCC) are equivalent to Cartesian. Less symmetric
Structures (such as triclinic) would require change of the miller indices to relevant components in Cartesian coordinates.

Recall the Schmid law: 𝜏, = 𝜎 cos𝜙 cos 𝜆
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Pressure independence of slip
• 𝒏# = $,$,$

$,$,$
and 𝒃# = $,&,'$

$,&,'$

Say, the crystal is subjected to stress tensor of

𝝈 =
1 0 0
0 0 0
0 0 0

, 𝝈 =
2 0 0
0 1 0
0 0 1

, 𝝈 =
2 0 0
0 2 0
0 0 2

Q) Calculate the resolved shear stress for each stress tensor above, and 
discuss what you observed.


