Examples of Einstein summation

a; = b;jc;d;  LHS 12|11 RHS 25 i 2t free index; (Correctly used notation)

a;b; = cydy; LHS 12|12 RHS E5 i, j 7| free index; (Correctly used notation)
Index j is repeated in ¢ and d. So, Einstein Summation Convention is implied

aibj = Cikdkj + eifj + 9ibjj + qitij

LHS has two free index i and j. In RHS, in the third term the same j is used as if
it is non free index; (Conflicts). Also, the fourth term has an extra index L.

When Einstein summation convention is implied, we call the index (over which
summation is performed) dummy as it is not important what letter is given.

For instance, a;b; = a; b, = a;b; ...etc
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2 B4 (vector) operations

* Dot product aka inner dot product (L A):
d=a-b=b-a ord=Y?a;b; - (Einstein):d = a;b;

e Alternative form:
= |a||b| cosO

0 £ % HEl (aand b) AtO|©| ZtO| Tk, fE5H = L X 0l Ch-g 1t 20| fdbet 2=k ULt
a-b= (axl+ay]+azk) (byi + byj + b,k)
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* Inner product of different basis vector leads in zero, while that of the same basis vectors
leadtol: i-j=0 andi-i=1

— ;- e; = §;; (Kronecker delta)
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summary

e Nomenclature
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M Eq (vector) dyadic operations
* Dyadic product:
a ® b = (a1e1 + azez + a3E3) ® (blel + bzez + b3e3)
where e,,e,,e; are unit vectors along the axes 1,2,3, respectively.

a@®@b=ab (e ®e)+ab(e;®e;)+abs(e; X e;z)
+ab,(e; @ e;) +azb,(e; ® e;) + abz(e; @ e3)
+asb,(e; ® e;) + azb,(e; @ e;) + azbz(e; ® e3)

Also equivalently, b b b
a,0q a, b, aq 3]

a ® b = [azbl azbz a2b3
asb, azb, azb;

If n° and b® are slip system s consisting of (unit) plane normal and (unit) slip direction vectors,
n® ® b® corresponds to Schmid tensor such that M* = n® @ b*® or M;; = n;b; (no dummy index)
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Examples: At= 0| &= & (work)
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Schmid tensor and resolved shear stress

. s — (LLD) s — (10-1)
= a2 = e )
Say, the crystal is subjected to stress t%nsc(n)r o1(°)
o= [0 0 O]
0 0 O

The resolved shear stress (RSS) amounts to
5S=0-n°-b5=0:M°= O'UMLS)

5 o) li) el
s=(lo o o|l-—=|1|]-—=]|o0
' o o ol V3l1l/ V2|

-2 o]

Recall the Schmid law: 7° = ¢ cos ¢ cos A

** Caution, direct use of miller index for crystal plane normal and direction should be careful.
Crystal coordinate system of cubic (FCC, BCC) are equivalent to Cartesian. Less symmetric
Structures (such as triclinic) would require change of the miller indices to relevant components in Cartesian coordinates.
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Pressure independence of slip

s _ (11D s _ (1,0~
a1 2P =100

Say, the crystal is subjected to stress tensor of

1 0 O 2 0 0 2 0 0
c=1|0 0 Of,e=|0 1 OL,o=|0 2 O

0 0 O 0 0 1 0 0 2

Q) Calculate the resolved shear stress for each stress tensor above, and
discuss what you observed.



