Vectors and Matrices
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Nomenclature

Rule(1) &= =M Ml (bold face)&2 A0 Tl L8l 7|2 (Z7td p) = D 7|27t 7HE7| =
=c|2F0| HE ) Z o|O|stCt,

Rule(2) HIEpE T+ HEES AFESIH 7| == QULE b = (by, by, b3). L
T4 &2(b; withi = 1,2,3)0| 2 MK 7 OtH S NHZE A0 X AZS = QISEL (2f2)

-

Rule(3) 2 MM 2Xt 4 = HE| 22 27 order tensor (22 3x3 matrix)S LHEIL =G|

Cr=dF 20| A& == QUL

Ay Ay Ags
A=Ay Ay Ay
Az; Azp Ass

Rule(4) Chalk board symbol denotes 4t rank tensor E for elastic modulus.

*(Mnemonic) &= =M KX 2Xt= 02 HE( )OE O|F0|ZI =2|2

g2 =MH = oLl dZ(4 )OE”*OI—rOPH (Ct.




Nomenclature

* In matrix notation, the subscripts (also called as indices) are used to denote the
rows and the columns of the associated components.

* Say, A;; refers to the component in i-th row (&) and j-th column (2)*.

Ay Agp Ags
d Example: A= A21 AZZ A23
A3y Aszp Aszs

* We preferably use Cartesian coordinates consisting of three basis vectors (often
denoted as e4, €,, €3 or equivalently as i, j, k)’

"(Mnemonic) & A ES FE0H0 22 B 7IRMZ(0), M27H2 (x); . MELM B2 7HZ,
=2 M Z. Row2t columnS column 7| &' ot 7|2 MHA I:|' RN Column._ o

'—HIH X| rowe Q.

*The basis vectors are written in bold-face, implying that they are vectors not scalars.




Why do we study vectors, tensors, coordinate systems?

Mzs 2HAHOE XHAUO0|IH, AZ e =2|F U= AFSOIAN MBS HES=
282 =+ Bl

M=2| HS0i|A O] (anisotropy)/t = OF
QUL}. (e.g., Miller index)

SO =2 HS0| E2tE =

U

AR S 280 S2[2Y0| ZHEHSHY Of 2 Mot O| 28 2ol =25
DEo[/EE dEor=0 ZHEE &~ ALt otX| 2 2 A 3kt A = L
TZEO 8T MHO|H, =7t 7HE 0] F(anisotropy)
2EOHAL 2R 22| Gt Hs= 282 = Blrt

stutsto 20| ZI0| Bt 74El 1p X B = QICH [2FA] scalar Hﬂl%%ﬂf%@!giﬂd
O|FAT Mz +dBEHE S0 HEot7| 2 ot A 7t UL

HFYl) 1XHE A =2 2] 1K SZH0[A 2] S & T D2 SHCHH vector, tensor 282 2= A.




* Say, a vector a has two separate components a = (a4, a,). For example, vector b = (2,3)

* In 3D, a vector has 3 components.

* Length (magnitude) of a vector in 3D.

lal= Ja + a3+ ad =[NPl

e vector a®| Tt Bl = Ct=a1f £ Lt

a a4 a, as
|a|

) )
2 2 2 2 2 2 2 2 2
\/a1+a2+a3 \/a1+a2+a3 \/a1+a2+a3



Ofl &l

Ex1) Ct= Bl E{ 9| length (magnitude)S TtoIA| 2.
a=(1,2,5)

Ex2) Ct= Bl E{ 2| unit vectorS oA 2.
b=(112)



B

2 (mathematical operations)

Of == AtOf| A off 2R EH A Lb?

* Operations for vectors, tensors, matrices?
* Scalar product
» Dot product (Ll &, inner dot product) -
Addition (H E| SF/X) +, —
e Cross product X
e Double dot product :
* Dyadic product &



S Eq (vector) operations (&4

* Vector addition: addition of vectors a and b can be expressed as:
either c=a+b or c; = a; + b;withi = 1,2,3 (*)

- HIE] ©F= bold-face’| 2 & AFESI0 H7|SHAHLL,
- QIElA H 7| (indicial notation) | [LF2f LEEFE 4= QULCE

(*)FYI, A

OlElA 7}1,2,3 0| HElsIOZ QO 2= MEFSI0] B 7|

rr




HIE] (vector)

* Vector multiplication with scalar
ca = (caq,ca,, caz) =c(aq,a,, as)

* A vector decomposed into three vectors alighed
with basis vectors of given coordinates:

a = alel + azez + a3e3
Some people use i, j, k (*) to denote the basis

vectors such that
a=ai+a,j+ ask

rfot

SOt & A.

(*) bold-face 9/ i, j, k 2F BE X} QIEIA § j kE




vectorg:rL FA| 2
a=(-130) b=(2-21)

Ex3)a = (—1,23) b= (2,-2-2)
a+b=(-1le; + 2e, + 3e3) + (2e; — 2e, — 2e3)
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Vector operations and coordinates
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The scalar product

Geometric representation of scalar product
of two vectors x and y

\

=7

= |x||y| cos 6

cos @ is an even function, so that

= |xllyl cos(=6)

| x|

=x = (x-x)1/2

= |yllx| cos(8) =y-x

FYl, e; - €; = §;; (Kronecker delta)

6;j =1(@fi=7)6;;=0(0#))

Algebraic representation of scalar
product of two vectors x and y

X = xlel —+ xzez —+ X3e3 = inei
i

Yy =Xx1€1 + Xx,€, + Xz€3 = Z)’iei

x.y:@clel) (Zy,e,)
22 x;yje; - ej = ZZ xiy;6ij
— Z Z Xy, 8i; = Z Xii

i



Indicial notation; !

B~

712, |.77|= 2 LIEHH BB 2| 2= B ™A} (subscript)

(Ol: ;= M H a2 d== KT

« 3XR0| M index=i = 1,2,3 EAH.
« a, =a¥EH2I3HE, e, = ey, e, e; Al HIEHE ST (Q: XH0]7?)

S

* 0, 011,031, 031 M 422 2 (AR index 7F StLE: i)

7|- EC S
Cij &= = €11, €12, €13, C21,C22,C23,C31,C32,C33 S S 9/lel g (X|' index =71 i vj)

* aj; b] (- albl, albz, a1b3, azbl, azbz, azbg,agbl, agbz ) a3b3 (@) 97H Ol ljl‘ % IE_?; (X|"|T index ﬂ:—7H
L,j)

. 99 = 2797
St =0 (272)

RIElA jo| AR 0= 22Xt 220 5 LotA| LIEILE A2 E = not free; QI HI A (= free. [TFEFA]...

60'1]' 60'11 60_12 60'13
a—xj-l_bl_ ax1+ax2+ax3+b1_0
00y doy1 | 003; 0033 _
0x; th=0 aaxl aaxz (;3953 th2 =0
03, 031 n 032 033 by =0

0x; +b3 =0 dx; O0x, 0x3




Einstein summation convention
(Einstein notation)

—

&0ot0 12[0
U

o
0/l AtalE

O nijo

=20z MBI (10| Bal WAl %@) i
BgiCt

Lt

o HIE L} BIA 7} inner dot, cross product, &S 2| operations & 0 S} H A
‘DA O] AS A0 BHEA] SHE subscript 7t S HA LIEFLELD HICHEZ
subscript’| SFHA HE= 5[0 LEEFLEEH S Ay Of EA|oHChH= A O| T,

1 ="

o [[|‘E|‘A‘| O'|X‘” L_I- I:7HO| EOIOI_|' subscr|pt7|- L_I-El-L_I-EH |' |' |
summation 7|2 QIO = =ICt1 2T

1916. A 7.
ANNALEN DER PHYSIK. . 01|% =W xy, 2 22 EHO| 40 LI2H 0| A2 2 T2 St
VIERTE FOLGE. BAND 49. orH gt e 7 x x;y; 2 2|0[SHCH= AFALO|CH (O] n2 22|20
1. Die Grundlage :H:_6:|E|_I —'o—|7_|'9_| X|'o|_-IO| El‘)

der allgemeinen Relatévitdtstheorie;
von A, Einstein.

o S AFSHA|, BHRF = O| subscript/F BFHE EICHH =71 9| summation

Die im nachfolgenden dargelegte Theorie bildet die denk- AH |
bar weitgehendste Verallgemeinerung der heute allgemein als 7 | 27|- O E|-
., Relativitatstheorie” bezeichneten Theorie; die letztere nenne
ich im folgenden zur Unterscheidung von der ersteren ,spezielle

Relativititstheorie” und setze sie als bekannt voraus. Die



Examples of Einstein summation

n
*X = X;€; = inei = X1€1 + X5, + -+ X, €,
i

"X Y=xYi0i = XiYi = XY; = XaY1 T XY o XY

X e1:x1
*X-€ =X€ € =xj6ij:xi{x°e2:x2
x‘e3:x3

The last equation defines the components of vector.

The same can be referred to as ‘projection’ of x on
the e; axis. (x2E 2| e, 2 22| LjA)




Examples of Einstein summation

a; = b;jc;d;  LHS 12|11 RHS 25 i 2t free index; (Correctly used notation)

a;b; = cydy; LHS 12|12 RHS E5 i, j 7| free index; (Correctly used notation)
Index j is repeated in ¢ and d. So, Einstein Summation Convention is implied

aibj = Cikdkj + eifj + 9ibjj + qitij

LHS has two free index i and j. In RHS, in the third term the same j is used as if
it is non free index; (Conflicts). Also, the fourth term has an extra index L.

When Einstein summation convention is implied, we call the index (over which
summation is performed) dummy as it is not important what letter is given.

For instance, a;b; = a; b, = a;b; ...etc



O] %! Ct= expression= Einstein summation

b=x+C-y
C-y=WHO|H ¢7t 2" order tensor (3x3 matrix) O| 0 y= HE{ O|C}, }2tA O Z1t=

Cr1 Cyp Cy3 = |C21Y2 + C2y2 + Cr3Y3

[Cn 12 C13] [ ] [6113’1 + C12y, + C13Y3
C31 C3 (33 C31Y1 + C32y, + C33Y3

= Z C25yj

3 - - 3 J
Z C1jYj Z C1Yj
J J
X1 3 by X1 3 b; = x; + Z Cijy; fori=123
X3 j b3 X3 J
3 3
Z C3jy; z C35y; | = b =x+Cyy; |
| i | |




2 B4 (vector) operations

* Dot product aka inner dot product (L A):
d=a-b=b-a ord=Y?a;b; - (Einstein):d = a;b;

e Alternative form:
a-b = |al||b| cosb

0 denotes the angle between the two vectors (a and b).
a-b=(ayi+a,j+ayk)-(byi+b,j+bk)

where i, j, k are unit vectors along the axes x,y,z, respectively.

* Inner product of different basis vector leads in zero, while that of the same basis vectors
leadtol: i-j=0 andi-i=1

— ;- e; = §;; (Kronecker delta)

12 1.2
1.0 1.0
% Y

0.8 1 [0.150.6 ] 0.81 [0.150.6 ]

061 061 | 10.12041176 0.51764706] Either way, the dot prOdUCt
0.41 (00041 0.41 I A amounts to ~42.27

_10.38076923 0.25384615]
0.2 1 0.2 1
0.0 0.0
X X

-0.2 -0.2

0.00 0.25 0,50 0.75 1.00 1.25 1.50 0.00 0.25 0,50 0.75 1.00 125 1.50
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Cartesian coordinate system

« 22| = orthonormal ﬂgﬂl (A_'l|_§ =210l M| unit
vector”} basis)3F AF2S}H7| 2 SHAT,

* Now, we denote these three orthonormal basis vectors
as e, e, and es.

X3 Right-handed (e; Xe, = e;)

Left-handed (e, Xe; = e3)

L Right-handed Cartesian
€3 (orthonormal) coordinate system.

€2
. \ .
//‘ A vector x then can be expressed a linear

x| combination of the three basis vectors such that
X = X1€1 + X2€- + x3e3




M Eq (vector) dyadic operations

» Dyadic product (a.k.a. outer product):
a ® b - (a1e1 —+ azez —+ ageg) ® (blel —+ bzez + bgeg)

wheree,,e,,e; are unit vectors along the axes 1,2,3, respectively.

a®b=ab (e ®e)+ab(e;®e;)+abz(e; X esz)
+azb,(e; @ e;) +ayb,(e; ® e;) + abz(e;  e3)
+aszb,(e; @ e;) + azb,(e; ® e;) + azbz(e; & e3)

Also equivalently, b b b
a, 04 a, b, aq 3]

a ® b = lazbl azbz a2b3
asb, azb, azb;

If n5 and b® are slip system s consisting of (unit) plane normal and (unit) slip direction vectors,

n® @ b* corresponds to Schmid tensor such that M® = n® @ b* or M;; = n;b; (no dummy index)



Schmid tensor and resolved shear stress

. s — (LLD) s — (10-1)
= a2 = e )
Say, the crystal is subjected to stress t%nsc(n)r o1(°)
o= [0 0 O]
0 0 O

The resolved shear stress (RSS) amounts to
5S=0-n°-b5=0:M°= O'UMLS)

5 o) li) el
s=(lo o o|l-—=|1|]-—=]|o0
' o o ol V3l1l/ V2|

-2 o]

Recall the Schmid law: 7° = ¢ cos ¢ cos A

** Caution, direct use of miller index for crystal plane normal and direction should be careful.
Crystal coordinate system of cubic (FCC, BCC) are equivalent to Cartesian. Less symmetric
Structures (such as triclinic) would require change of the miller indices to relevant components in Cartesian coordinates.




Pressure independence of slip

s _ (11D s _ (1,0~
a1 2P =100

Say, the crystal is subjected to stress tensor of

1 0 O 2 0 0 2 0 0
c=1|0 0 Of,e=|0 1 OL,o=|0 2 O

0 0 O 0 0 1 0 0 2

Q) Calculate the resolved shear stress for each stress tensor above, and
discuss what you observed.



|[dentity matrix

, A-I1=4, I-A=A4

[ )

Py

||
=
O = O

i

* In the tensor notation, one would use the
Kronecker delta denoted as 0;;



Kronecker delta examples

E E Q1) a;; = byd;;
aij6ij = aij6ij = a1161]_ + a12612 ) U kkYij
|

1. There are on dummy index, k and two
= aqq t+az; +aszs free indicies i, j

2. Therefore, the above means 9

_ equations.

i 3. If we expand the dummy index k, we
= Qi have
a;j = (b1 + by + b33)6;j

Notie the dummy index i, so that
Ajj = 4jj = gk -



Kronecker delta

Q2) Ejji = 460k + ,u((Sik(Sﬂ + 5iz5jk), expand the equation to find explicit component [E;,33
1. Thereis no dummy and four free indicies exist, namely, i, j, k,
2. Eqz33 = 4812633 + (813623 + 813623) = 0

Q3) Expand the equation to find explicit component IE2233 = 2.622633 + ,Ll(623623 + 523523) = A

Q4) Expand the equation to find explicit component E{515, = 481,815 + (811022 + 6128,1) = U



Transpose

3 4 6
cA=|-3 2 5
1 -1 -4
3 -3 1
cAT=[4 2 -1
6 5 —4

* In tensor notation, Al-Tj = Aj;



Matrix addition and dot, double-

dot products

» Addition
e C=A+B
¢ CU = AU + Bl]
* Dot products
«C=A-B
* Cij = AjxBy; (Find the free and non-free indices!)
* Multiplication is not commutative
e A-B+B-A

* Double dot products
 d = A: B (denote d is a scalar quantity thus is not denoted in

bold-face)
e d = AUBU




Rotation (transformation) of the coordinate system

Relationship between the components of a unit vector expressed with respect to
two different Cartesian bases with the same origin (not necessarily orthonormal);

Two cartesian coordinates (K and
K") with two separate sets of basis
vectors (e; and e;) and a vector x

L

Any vector X can be resolved into components with
respect to either the K or the K’ system.

x=(x-¢)e; = xe
If we take X = e; (a certain basis vector of K')
A 4 o . . — .. .
e; = (e - ¢))e; = ajje;

The nine terms a;; (for each of three basis vectors;
i =1,i = 2,and i = 3) are directional cosines of the
angles between the six axes:

a1 A1 aAqg3
R = (aij) = |Ay1 Ay A3
31 Azp d3z3

R is known as the transformation matrix (or rotation
matrix) in three dimension.




Rotation (transformation) of the coordinate system

I — . . . r
€; = a;;€;  Switchingj - k e; = a;xex
Earlier, we defined: a;; = e;-€; Anda;je; =e;-¢e;-e;

)

aij ej = e§|e| — aijej = e;
=€ € =age, e =ayb;  [a] =[b]?
/

If we defined: bl] =€ ej

Any vector X may be expressed in the K system as

or as in the K’ system using primed basis such as
Y Y

They are the same vector so one can equate
X = Xl,e: = X]e]
One could replace e; with a;;e;

q 0 ! —
Two cartesian coordinates (K and XiQij€; = X;€; Xi = a::x!
q . ] JL7 1
K") with two separate sets of basis so that
: ! =g LA PSS L Tr 1T
vectors (e; and e;) and a vector X Xj = X;Q;; [x]] — [xl.aij] xXj = [aij] [x/]

Or equivalently, swapping the indices i and j gives:

. /
X = al-jxj



Inverse transformation?

Earlier, we defined:

_ —e. (e -e') =(e. .- e = a..e’
e =e Xl = el(e] e]) = (e; e])e] aij€; aj; = €; - €
_ !/
bij—ei°ej

_ I __ I !
AkjXj = Qjbjx; = Opx; = X . :
Earlier, we defined:
h— , b— ] ’ h— - n
aij—ei-ej—ej el-—b]l
In summary we have:

X = x’e’ = X:e:
L A If the inner dot product of a

I} /
e. =qa;:e; e: = q;:e: .
3 ij<j L Ly and b matrices:
X; = Q;jX;, Xi = QX — (e !
A =6 ] aixbyj = (e; - ek)(ek ' ej)
AikAjx = AgiAgj = Ojj !

=e; - (ex-eg) - €
=ei-e]'-=5l-j



Scalar product is invariant under
orthogonal transformations

/ A B A .
XY =XY =0iX0ikYr = ;0 XYk

= OjkXjYr = XjYj = XY

T
aijQik = (a;;) ay = bjay = S



Two dimensional case

X5 Xo https://en.wikipedia.org/wiki/List of trigonometric identities

Shift by one quarter period
sin(f + ) = +tcos
cos(f + ) = Fsinb
tan(s  3) = il
csc(f + ) = L secH
sec(ff = ) = Fesch

a;; = (e;-e)), fori,j =1,2 cot(d + 1) = (lxq)fcé:)f;

3 cos ¢ cos(90° — ¢)
[aif] - [cos(90° + @) cos ¢


https://en.wikipedia.org/wiki/List_of_trigonometric_identities

Physical theories must be invariant to
the choice of coordinate system

If we fix our attention on a physical vector (e.g. velocity) and then rotate the coordinate
system (K — K'), the vector will have different numerical components in the rotated
coordinate system (as evident in the coordinate transformation rule we just discussed
earlier). So we are led to realize that a vector is more than an ordered triple. Rather, it is
many sets of ordered triples, which are related in a definite way. One still specifies a
vector by giving three ordered numbers (components), but these three numbers are
distinguished from an arbitrary collection of three numbers by including the law of
coordinate transformation under rotation of the coordinate frame as part of the

definition.

Thus, one physical vector may be represented by infinitely many sets of ordered triples.
The particular triple depends on the chosen coordinate system of the observer.

This is important because physical laws (and results) must be the same regardless of
coordinate system, that is, regardless of the orientation of observer’s coordinate system.



Physical laws and coordinate system

* The importance of thinking of these quantities in
terms of their transformation properties lies in the
requirement that physical theories must be invariant
under the change of the coordinate system.

* Physical laws should not be affected by the choice of
a coordinate system.

* We’ll examine this using an example in what follows.



Newton’s second law

Algebraic representation Vg x| Gravity
F = - K’
= ma - F; =ma; > F; = my;
—mg
. da VO
° o0 a _ —-—
R — . — i dt
F; = mv; = mx; y 6
dx; . K
AT d ¥
[/
a; =v; = % = % =X Vo =Muzzle velocity

Let’s assume acceleration X;
is function of time, so that
x = X;(t)

Furthermore, if we assume the mass is
constant (which is quite usual), the
second law is equation with the location
x; and its derivatives as variable —do not
forget another variable time (t).



Newton’s second law
F;(t) = mX;(t)

Let’s use K coordinate system

1. Initial condition in terms of
location (x;) and velocity (x;)-
x;(0) =0, with i = 1,2 Vo =Muzzle velocity
%1(0) = vycosb x;(0) means x;(t = 0)
%5(0) = vy sinf

t

2. Force given by gravity is constant (gravity field): x,(t) = f 1o c0s 8 dt = vot cos 6
0

F1 = mjél = O, FZ = —mg = ij.z

3. Estimate x;(t) =?

t
1
x,(t) = f (vosinf — gt)dt = vyt sinf — Egt2
0

tdxi t.
x;(t) = x;(0) +f —dt = x;(0) +J x;dt
o dt 0

tdx, t
X (t) = x;(0) +J d—tldt %, (t) = %, (t =0) +j ¥,dt = vycosf + 0
0 0

t t

X,dt = vysinf +j —gdt = vysinf — gt
0

% (8) = 1,(t = o>+j

0



Newton’s second law
F;(t) = mi;(t)

Let’s use K' coordinate system ¥

1. Initial condition in terms of
location (x;) and velocity (x;)-
x;(t=0) =0, withi = 1,2
x1(0) = vy
%5(0) =0

g Gravity
Y2 X]
% l
—mg
Yo
()
K
d X1
[/}

Vo =Muzzle velocity

2. Force given by gravity is constant (gravity field):
F, =mX; = —mgsin@, F, = —mg cos 0 = mix,

3. Estimate x;(t) =?

t
x,(t) = j (vg — gt sinB)dt
0

I
=v0t—§gt sin 6

tdxi t
4 =5+ | Fhde=x 0+ [ 5
t ° 0

Qéi(t) = XL(O) +J 5C-idt
0
t

t
1
x,(t) = f —gtcosfdt = —Egtz cos 6
0

t
5c'1dt=v0—j gsinfdt =v,— gtsinf

0
t

X,dt = O—j gcosBdt = —gtcosb
0

%1(8) = %,(0) + j

0

% () = 1,(0) + j

0

t




Graphing the two results.

Plot the result with theta=45 degree

At t=0
at t=1s
*  Which of the frame was the easy one?
at t=10s
e Describe why we’d want to chose a
at t=100s frame that gives easy calculation?

Plot the result with theta=90 degree
At t=0

at t=1s

at t=10s

at t=100s
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I I
0 T R T e e = 0 1 .:.é':;f’; _______
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—-1000 { —— K frame —1000 { —— K frame
0 500 1000 1500 0 500 1000 1500

. 400 - — Kr frame 400 - I
1 O Krframe . — Kframe
W —— Kframe % 200 1 200 1 &
0 250 500 750 1000 O [ P 08—
B Krframe 0 250 500 750 1000 O 250

X

400 - Kifame 400 - O Krframe
UL —— K frame

I 2001 f}
04 b———— - 08 oL

0 250 500 750 1000 250 500 750 1000

X



Cross product and permutation symbol

Cross product between two orthonormal basis vectors: e;Xe; = €€, (i, j: free; k: dummy)

The symbol €, ;. is called the alternating symbol (or more commonly permutation symbol and
more formally Levi-Civita symbol for more general cases).

1, if 4, 7, k are in cyclic order and not repeated (123,231, 312),
€ijk = ¢ —1, if4i,j,k are not in cyclic order and not repeated(132,213,321),

0, if any of 7, 7, k are repeated.
2 /2)

3 3 -1

17 N\

For the indices (i, /, k) in &, the &
values 1, 2, 3 occurring in the |:|
cyclic order (1, 2, 3) correspond to
&= 1, while occurring in the [JJjj
reverse cyclic order correspond to
&=—1, otherwise ¢ = 0.

where i is the depth (blue: i = 1; red: i = 2; green: i = 3), j is the row and k is the column.
axb = (al-ei)x(bjej) = aibj(eixej) = aibjeijkek

€ijk€ijk = 6



Area of inclined triangle calculated by using cross-product

REF: https://youtu.be/eu6i7Wleinw

v X w = Area of parallelogram

. |u| lwxv|
The area of triangle: Pt

The unit normal vector of the traingle: IZ_I

lul J(bc)? + (ac)? + (ab)?

2 2
u [bc, ac, ab]

WXy =uU
(Wiel')X(vje]') = WiVj€;jr € = Ur€y
Uy = WiVj€jj1 = WUz — W3V, = —(—c)b = bc
Uy = WiVj€jj; = W3y — w3 = (—c)(—a) = ac
Uz = Wl'vjel'jg = WUy — WV = ab

lul - \/(bc)2 + (ac)? + (ab)?



https://youtu.be/eu6i7WJeinw

Relations between triangular surfaces
(will be useful for Cauchy tetrahedron)

€3 | 100,

u = wxv

[0, b, 0]

r =[0,0,c]x[0,b,0] = —cbe,
q = [a, 0,0]%][0,0,c] = —ace,
r =1[0,b,0]X[a,0,0] = —bae,

b
Volume of tetrahedron: aTc

lul _ /(bc)2+(ac)2+(ab)?

Area: —
2

. u
Unit normal vector: — =

2
[loXs,c.c,ab]

lul J(bc)2+(ac)2+(ab)?

Confirm
u; A/ (bc)? + (ac)? + (ab)?
|| 2
U, \/(bc)z + (ac)? + (ab)?
| 2
1, /(bc)? + (ac)? + (ab)?
|ul 2

u = wxvov



Relations between triangular surfaces
(will be useful for Cauchy tetrahedron)

U = wXv
r =[0,0,c]x[0,b,0] = —cbe,
q = [a, 0,0]%][0,0,c] = —ace,
[a, 0,0] [0,5,01 9 =[0,b,0]%x[a,0,0] = —baes

b
Volume of tetrahedron: aTc

: Parallelpiped
Tetrahedron >

Tetrahedron volume = l (Parallelpiped volume)

Volume of a Tetrahedron: Example

([a; 0;0] X [O; b; O]) ) [0,0, C] v=l@xgrd A=<200>

— - B=<02,0> %
I of tetrahedron = 6 N B-<003> BA
0
(AxB)-D=(0)(0)+(0)(0)+(4)(3)
=12 >

v=1@xB)b=[2] x

g)no...)
» OCOX)




Integration (scalars)

a is a quantity that is varying with respect to time t. If you know the initial value of it, (i.e.,
da . :
a(t = 0) and you knowd—? in all time stamps, you’ll be able to calculate a(t = 1) via:

Tda

a(t=1)=a(t=0)+ f — dt, this is sometimes written in short:

—a(0)+j _dt

You could have an analytic expression of the above, (or not). In case of former, you'd have
Something like

a(t) = ag + 2 + cos(7) exp(7) ...

In case you cannot obtain an analytic expression, you can could ‘numerically’ obtain
the solution.



Integration (vectors, tensors)

a is a quantity that is varying with respect to time t. If you know the initial value of it, (i.e.,
da; ,., . : . :

a(t = 0) and you knowd—at‘ (i being the free index) in all time stamps, you’ll be able to

calculate a(t = 1) via:

Tda

a(t=1)=a(t=0)+ fo o dt , this is sometimes written in short:
+ T—da dt
a, = a(o)
o dt

You could have an analytic expression of the above, (or not). In case of former, you'd have
Something like
a(t) = ay + cos(t) exp(t) M: b ...

In case you cannot obtain an analytic expression, you can could ‘numerically’ obtain
the solution.



Summary

* Nomenclature
* What vectorial quantity is required?

. }j/ec;cor operations (addition, scalar multiplication, inner
ot

e Use the same coordinate system for vector operations
e Dyadic operation and Schmid tensor
 |dentity matrix (Kronecker delta)
* Transpose operation
* Matrix addition and multiplication
e Coordinate transformation
* Cross product



Reference

https://www.continuummechanics.org



