Chapter5 Phase Transformation Part I

강의명: 기계재료공학 (MFA9009)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-212 전화: 055-213-3694

HOMEPAGE: <u>HTTP://YOUNGUNG.GITHUB.IO</u>

Recap

Failure: occurs by three main mechanisms

- Fracture
- Fatigue
- Creep
- Fractography
- =Fracture (파괴)
 - Brittle fracture
 - Ductile fracture
 - DBTT
 - Basic Fracture mechanics and application to design problems
- =Fatigue (피로)
 - Failure under stress far below YS, TS; Cyclic loading
- ■Creep (크리프)
 - Time dependent permanent deformation

Objectives and outlines

- 전형적인 고체의 상변태에서 시간과 상변태 분율을 나타낸 대략적 그래프 이해

서론

- ■금속 재료가 널리 사용되는 이유중의 하나는 이들 재료가 가질 수 있는 기계적 특성의 폭이 넓고, 이러한 특성을 여러 방법에 의해 용이하게 구현할 수 있다는 점이다.
- ■앞서 몇몇 강화기구(strengthening mechanism)에 대해 얘기했다.
- ■금속의 기계적 특성들은 금속의 미세조직(microstructure) 특성에 의해 영향을 받는다.
- ■단일상/2상 합금에서 미세조직의 변화는 상변태(phase transformation)를 수반한다.
- ■고상(solid phase)의 상변태에 대한 기본 원리를 살피고, 고상상변태가 시간에 따라 발생하는 방식을 살펴볼 것이다.
- ■다음으로 Fe-C 합금에서 생기는 two phase (2상) microstructure에 대해 알아보겠다.
- 그리고 특정 열처리 방식에 의해서 얻어지는 미세조직을 설명하는데 필요한 상태도에 대해 얘기하겠다.

Reviews

■상 Phase

- ■평형 상태의 상 Phases in equilibrium
- ■상변태 Phase transformation
- Allotropic transformation
- ■회복, 재결정, 결정립 성장 Recovery, Recrystallization and grain growth
- Gibb's phase rule
- Eutectoid, eutectic, peritectic reactions (invariant points)
- ■준평형 상태의 상 Metastable phase (resulting from diffusionless transformation)

Introduction

■미세조직(microstructure)은 기계적 성질(mechanical property)과 밀접한 관계

■한 합금의 미세조직은 그 합금의 <mark>상태도(phase diagram)</mark>에 표현되는 다양한 정보를 활용하여 짐작 가능하다.

■따라서, 상태도에 쓰여있는 정보들을 잘 이해하는 것이 중요.

■상태도 (phase diagram)?

- 온도(T), 압력(P), 조성(C)에 따라 달라지는 안정한 상(phase)을 나타낸 도형 (diagram)
- 주로 압력을 제외하고 (즉, 고정된 압력하에서) 온도와 조성에 따라 달라지는 물질의 '평형상'을 나타낸다.
- Terminology
 - 합금 (alloy)
 - 상 (phase): 물리적, 화학적 성질이 균일한 계의 균질한 부분 (예: 설탕물)
 - 평형 (equilibrium): 시간에 따라 바뀌지 않고 유지 (상평형: 1개 이상 상이 존재하는 계의 평형; 시간에 따라 변하지 않는다.)
 - 성분 (component): 합금을 구성하는 순금속이나 화합물 (예: 황동의 성분은 구리와 아연)
 - 계 (system):
 - 1. 고려 대상 물질의 집합체;
 - 2. 합금의 조성에 관계없이 같은 성분 요소로 이루어진 합금 계열 (예: 다양한 구리와 아연의 비율로 이뤄진 황동)

Terminologies

■Alloy (합금)

•Phase (상): a region of space throughout which all physical and chemical properties of a material are essentially uniform.

Solid Solution (고용체)

- Solvent (용매)
- Solute (용질)

Component (구성 성분)

System (계)

예) 물의 상태도

단일 성분 (1원) 상태도; Unary Phase Diagram

- 하나의 원소, 혹은 위와 같이 하나의 화합물 (H2O)로 만 이루어진 계 (system)의 경우에는 조성(화학조성; chemical composition)과 애초에 무관하다.
- 만약 합금이라면, 합금을 이루는 원소 (혹은 화합물) 간의 조성비(원소간의 비율; 분율)가 중요.

합금과 같이 두가지 (혹은 그 이상) 성분으로 이루어진 계의 경우에는? 성분 원소들: **한계**가 존재

성분 원소들의 비율(분율; 화학조성)가 중요 – 게다가, '상'의 기본 조건인 '균질성'을 만족하면서 **최대로 섞일 수 있는 한계**가 존재할 수 있다. (다음 슬라이드에서 더 다뤄보자)

Solubility limit (용해 한도)

설탕물의 경우

- 설탕물 속 설탕 화합물은 균질하게 용해된 상태
- 물: 용매 solvent; 설탕 화합물: 용질 solute
- 균질한 섞임; 성질이 균질하게 나타남. 따라서, 설탕물은 상(phase).
- 하지만 설탕 화합물이 물속에 무한히 용해될 수는 없다. 용해 한도(solubility limit)가 존재한다.

Phase diagram

- (평형) 상태도를 일컫는 다양한 용어:
- Phase diagram
- Equilibrium diagram
- o constitutional diagram

한 상(phase)의 안정도(degree of stability)는 다음 <u>세 환경 변수</u>에 영향을 받는다.

1) temperature; 2) pressure; and 3) composition

현 교과과정에서는, 이원계(binary system)로 한정된 상태도만 다룬다. 삼원계(tertiary system)는 여기서 다루기에 너무 복잡. 이원계 상태도는 주로, 고정된 압력에서 온도(T)와 조성(C)에 따라 바뀌는 안정한 상들을 표현한다.

At a fixed composition (pure water)

At a fixed pressure

Sugar/Water Phase Diagram

상태도의 활용 (binary system)

Phase transformation and time; metastable

For metallic alloys we'll discuss, the time required for the changes between phase (phase transformation) is much slower than that of liquid system. For this reason, various microstructures can appear.

Sometimes, even if

 $G^A < G^B$,

the rate of phase transformation (B \rightarrow A) can be very slower, so that it seems that it does not occur at all; it may take years. In that case, phase B is called 'metastable (준평형)' under the given circumstances, since phase B hardly transform into A phase despite of the given condition $G^A < G^B$.

People can make use of such phases in their 'metastable' conditions, which may come out from certain heat treatments. What is the metastable phase(s) that appears during the precipitate hardening? For metastable phases, in addition to temperature, pressure and composition, time is also an important factor. Nonequilibrium (metastable) phases is discussed in Chapter 12 (Fall semester). Let's think about corrosion.

Corrosion is a slow process. The phase in equilibrium (rust) will eventually be produced but it usually takes years. We make use of the metastable steel (or iron) phase meanwhile.

Binary phase diagram (이원상태도)

Binary phase diagram: phase diagram for a system that consists of two elements (let's call them E_1 and E_2 , respectively.)

Phase stability depends on temperature, pressure, composition.

Binary phase diagram is usually refers to the one at a fixed pressure (under 1 atm = atmospheric pressure)

Binary phase diagram (이원 상태도)

Binary phase diagram: phase diagram for a system that consists of two elements (let's call them E_1 and E_2 , respectively.)

Phase stability depends on temperature, pressure, composition.

Binary phase diagram is usually refers to the one at a fixed pressure (under 1 atm = atmospheric pressure)

Cu-Ni binary isomorphous phase diagram

Naming convention (nomenclature):

- 1. Greek letters (such as α , β , γ) are used for solid phases. Alphabet L stands for the liquid phase.
- 2. Boundary separating L and L + α is termed the liquidus line (액상선)
- 3. Likewise, the solidus line (고상선) is the boundary between α and $L + \alpha$

Information in phase diagram

Rule 1: If we know T and C_° (좌표점 coordinates of in phase diagram), then we know which phase(s) is (are) present.

• Examples:

A(1100°C, 60 wt% Ni): 1 phase: α B(1250°C, 35 wt% Ni): 2 phases: L + α

Rule 2: If we know T and C_o (좌표점 coordinates of in phase diagram), we know the composition of each phase (determination of phase composition)

For a fixed composition (C_0) for the entire system, there are cases that multiple phases may exist (such as L+ α region). Each L and α phase may have different chemical compositions of Cu in Ni (or vice versa). The phase diagram can help you figure the chemical composition of each phase.

> At A (T_A, C_0) : L in C_0 At B (T_B, C_0) : L in $C_L + \alpha$ in C_α At D (T_D, C_0) : α in C_0

Information in phase diagram

Rule 1: If we know T and C_o (좌표점 coordinates of in phase diagram), then we know which phase(s) is (are) present. Rule 2: If we know T and C_o (좌표점 coordinates of in phase diagram), we know the composition of each phase.

Rule 3: If we know T and C_o (좌표점 coordinates of in phase diagram), then we know the **weight** fraction of each phase (phase fraction).

For a fixed composition (C_0) for the entire system; there are cases that multiple phases may exist (such as L+ α region); Each L and α phase may exist in different amounts.

At A (T_A, C_0) : Only liquid phase exist, thus $W_L = 1$, $W_\alpha = 0$ At D (T_D, C_0) : Only solid (α) exist, thus $W_L = 0$, $W_\alpha = 1$

At B (T_B, C_0) : Mixture of L and α ; We use the lever rule (or inverse lever rule).

1. Draw the tie line 2. Indicate the chemical composite for the entire system (i.e., C_0) 3. Find the distances from (C_0, T_B) to liquidus and solidus lines, respectively. (R and S) 4. Apply the lever rule: $W_L = \frac{S}{R+S} = \frac{43-35}{43-32} \approx 0.73 \text{ wt\%}$ $W_{\alpha} = \frac{R}{R+S} \approx 0.27 \text{ wt\%}$ * Notice that the unit; The unit used in the phase diagram is the unit of the obtained weight fraction.

Convert wgt. fraction to vol. fraction

For a binary system with α and β solid phases, one might want to know the volume fraction rather than 'weight' fraction.

$$f_{\alpha} = \frac{v_{\alpha}}{v_{\alpha} + v_{\beta}}$$

Can you obtain this from w_{α} ?

 v_{α} and v_{β} are volumes of α and β phase, respectively.

Yes, but I need to know the density

 $Density = \frac{weight (mass)}{volume}$

 $f_{\alpha} = \frac{v_{\alpha}}{v_{\alpha} + v_{\beta}} = \frac{\frac{W_{\alpha}}{\rho_{\alpha}}}{\frac{W_{\alpha}}{\rho_{\alpha}} + \frac{W_{\beta}}{\rho_{\beta}}}$ If ye

If you multiply
$$ho_{lpha}
ho_{eta}$$
 on denominator (분모) and numerator (분자)

$$f_{\alpha} = \frac{W_{\alpha}\rho_{\beta}}{W_{\alpha}\rho_{\beta} + W_{\beta}\rho_{\alpha}}$$

The inverse relationship of the above is:

$$W_{\alpha} = \frac{m_{\alpha}}{m_{\alpha} + m_{\beta}} = \frac{f_{\alpha}\rho_{\alpha}}{f_{\alpha}\rho_{\alpha} + f_{\beta}\rho_{\beta}}$$

Isomorphous alloy and its microstructure

(equilibrium cooling – no time required for phase transformation)

L+ α of sugar-water system, α particles will accumulate in the bottom due to gravity and density difference.

In the absence of gravity? (Or no density difference between L and α)

 C_0

wt% Ni

Isomorphous alloy and its microstructure (non-equilibrium cooling – time required for phase transformation)

Phase diagram does not have information of how much time is required for phase-transformation. The equilibrium cooling should be extremely slow to allow the transformation to start and complete – for chemical composition of solid α change, a certain flux of Ni should **diffuse** from α to the remaining L in the α +L region during cooling.

In practice, non-equilibrium cooling is observed with a reasonable cooling rate. The time required for transformation can be compensated by super-cooling or super saturation.

Why?

Diffusional process is involved in the transformation.

Note that diffusional process is time- and temperature-dependent.

As a result, after the cooling, the microstructure obtained by nonequilibrium cooling is not 'homogeneous' in terms of its chemical composition.

But if you let enough of time elapsed, you'll see the microstructure shown in (a).

Isomorphous alloy and its microstructure (non-equilibrium cooling -time required for phase transformation)

Cored structure; gradient of concentration;

If this microstructure is unwanted, how can we make the grains homogeneous in terms of their chemical composition?

A: heat-treatment to help diffusion of Ni/Cu. This heat-treatment will produce chemically homogeneous grains.

Mechanical property of isomorphous Cu-Ni system

• Effect of solid solution strengthening on:

-- Ductility (%EL)

Ductility decreases as strengthening increases

Binary eutectic systems

The term "Eutectic" means, easy melting.

Image from Wikipedia

The 'melting' temperature of $\alpha + \beta$ mixture is lower than that of pure α and pure β . That means, by mixing with foreign species, the melting becomes easier (eutectic).

Characteristics of this binary eutectic systems:

- 1) three regions where a single phase is present (L, α solid-solution; β solid-solution)
- 2) α phase is a solid-solution rich in copper; silver as solute; FCC structure
- 3) β phase is also a solid-solution but rich in silver; copper as solute; FCC
- 4) Solubility of each solid-solution is reducing in $T < T_{\rm E}$
- 5) Three regions where two phases are co-existent: L + α ; L + β ; $\alpha + \beta$

Binary eutectic systems

Along the liquidus line between L and L+ α , addition of solute (silver) decreases the melting temperature, where α phase completely melts to L.

The same applies to the liquidus line between L and L+ β ; Adding more solutes (Cu) will reduce the melting temperature of β solution.

These two liquidus lines meet each other at a certain point, an invariant point of fixed C and T values (eutectic point).

$$L(\mathbf{C}_{E}) \stackrel{\text{Cooling}}{\underset{\text{heating}}{\leftarrow}} \alpha(\mathbf{C}_{\alpha,E}) + \beta(\mathbf{C}_{\beta,E})$$

Reaction eq. at the eutectic point

 C_E : Eutectic (chemical) composition T_E : Eutectic temperature (horizontal line T_E : eutectic isotherm; 공정 등온선) $C_{\alpha,E}$: Eutectic composition of α $C_{\beta,E}$: Eutectic composition of β

Can you point out where (α , β and L) are co-existing?

Invariant point (T,C are fixed)

Other binary eutectic systems

Can you point out where is the pure ice? Can you point out where is the pure salt?

얼음에 소금을 뿌려 녹는점을 낮춘다.

납땜 (60 wt% Sn – 40 wt% Pb) 저융점 납땜 재료로 널리 쓰인다.

Ex1

 For a 40 wt% Sn-60 wt% Pb alloy at 150° C, determine: (1st rule) the phases present
 Answer: α + β

(2nd rule) the phase compositions **Answer:** $C_{\alpha} = 11 \text{ wt\% Sn}$ $C_{\beta} = 99 \text{ wt\% Sn}$

(3rd rule) the relative amount of each phase **Answer**:

$$W_{\alpha} = \frac{S}{R+S} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}}$$
$$= \frac{99 - 40}{99 - 11} = \frac{59}{88} = 0.67$$
$$W_{\beta} = \frac{R}{R+S} = \frac{C_{0} - C_{\alpha}}{C_{\beta} - C_{\alpha}}$$
$$= \frac{40 - 11}{99 - 11} = \frac{29}{88} = 0.33$$

Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Three rules for binary eutectic system Ex2

 For a 40 wt% Sn-60 wt% Pb alloy at 220° C, determine: (1st rule) the phases present:

Answer: L+α

(2nd rule) the phase compositions **Answer:** C_{α} = 17 wt% Sn C_{L} = 46 wt% Sn

(3rd rule) the relative amount of each phase

Answer:

$$W_{\alpha} = \frac{C_{L} - C_{0}}{C_{L} - C_{\alpha}} = \frac{46 - 40}{46 - 17}$$
$$= \frac{6}{29} = 0.21$$
$$W_{L} = \frac{C_{0} - C_{\alpha}}{C_{L} - C_{\alpha}} = \frac{23}{29} = 0.79$$

Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editorin-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Microstructure in binary eutectic systems #1

Microstructure develops during 'cooling' from liquid state to solid. We'll examine three cooling cases that start with different compositions.

 Case 1: For alloys for which	<u> </u>
Case 2: For alloys for which	2 wt% Sn < C ₀ < 18.3 wt% Sn
Case 3: For alloys for which	C ₀ =61.9 wt% Sn= C _E
Case 4: For alloys for which	18.3 wt% Sn< C ₀ <61.9 wt% Sn

Result: microstructure at room temperature

 polycrystalline with grains of α phase having
 composition C₀

Microstructure in binary eutectic systems #2

Microstructure develops during 'cooling' from liquid state to solid. We'll examine three cooling cases that start with different compositions.

Case 1: For alloys for which	C ₀ < 2 wt% Sn
Case 2: For alloys for which	2 wt% Sn < <u>C₀ < 18.3 wt% Sn</u>
Case 3: For alloys for which	C ₀ =61.9 wt% Sn= C _E
Case 4: For alloys for which	18.3 wt% Sn< C ₀ <61.9 wt% Sn

α 300 μα Co wt% Si 200 T_E 100 $\alpha + \beta$ 10 20 0 30 1 C, wt% Sn C_0 (sol. limit at Troom) 18.3 (sol. limit at T_F)

T(°C)

400

L: Co wt% Sn

Result: microstructure at room temperature (in α + β range)
-- polycrystalline with α grains
and small β-phase particles

Microstructure in binary eutectic systems #3-1

Microstructure develops during 'cooling' from liquid state to solid. We'll examine three cooling cases that start with different compositions.

Case 1: For alloys for which	C ₀ < 2 wt% Sn
Case 2: For alloys for which	2 wt% Sn < C ₀ < 18.3 wt% Sn
Case 3: For alloys for which	<u>C₀ =61.9 wt% Sn= C_E</u>
Case 4: For alloys for which	18.3 wt% Sn< C_0 <61.9 wt% Sn

20

18.3

C, wt% Sn

0

40

From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.

80

60

С_Е 61.9

Sn

100

97.8

Microstructure in binary eutectic systems #3-2

Microstructure develops during 'cooling' from liquid state to solid. We'll examine three cooling cases that start with different compositions.

Case 1: For alloys for which	C ₀ < 2 wt% Sn
Case 2: For alloys for which	2 wt% Sn < C ₀ < 18.3 wt% Sn
Case 3: For alloys for which	<u>С₀ =61.9 wt% Sn= С_Е</u>
Case 4: For alloys for which	18.3 wt% Sn< C_{0} <61.9 wt% Sn

Microstructure in binary eutectic systems #4-1

Microstructure develops during 'cooling' from liquid state to solid. We'll examine three cooling cases that start with different compositions.

Case 1: For alloys for which $C_0 < 2 \text{ wt\% Sn}$ Case 2: For alloys for which $2 \text{ wt\% Sn} < C_0 < 18.3 \text{ wt\% Sn}$ Case 3: For alloys for which $C_0 = 61.9 \text{ wt\% Sn} = C_E$ Case 4: For alloys for which $18.3 \text{ wt\% Sn} < C_0 < 61.9 \text{ wt\% Sn}$

Hypoeutectic & Hypereutectic

Similarly, there are 1) hypoeutectoid 2) hypereutectoid compositions.

Microstructure in binary eutectic systems #4-2

 $Q_{\text{5}}.$ What is the chemical composition of primary α at point m?

 $\textbf{Q}_{6}.$ What is the chemical composition of eutectic α at point m?

Binary systems with intermediate phase

Fe-C system

Remember three specific phases: α ferrite γ austenite Fe₃C cementite α and γ phases can form solid solution
 phases by dissolving carbons (C is an
 interstitial atom in Fe matrix)

system

Phases	characteristics
α ferrite	BCC, ductile, low carbon solubility (max 0.022 wt%), magnetic
γ austenite	FCC, annealing twins are often observed, high carbon solubility (max 2.14 wt%), non-magnetic
δ ferrite	Similar to α ferrite.
Fe ₃ C Cementite	Hard and brittle; Mixed with other phases to enhance strength; metastable; FE ₃ C may decompose into α iron and carbon in the form of graphite. This transformation (FE ₃ C $\rightarrow \alpha$ + graphite) may take years.

철합금 (Ferrous alloys)의 분류: 철(pure) iron, 강 steel, 주철 cast iron: 일반적으로 carbon 의 함유량에 의해 분류된다.

Carbon solubility in α and γ

 α , δ , and γ are solid solution phases of Fe-C system.

Solubility of C in Fe is mainly governed by crystal structure:

FCC can contain a lot more carbon than BCC; Octahedral sites are the primary places for carbons to reside. The size of FCC octahedral void is much larger than that of BCC, so that FCC can dissolve a lot more carbons in its solid solution state.

Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.

Fe-C system

- 2 important points
 - Eutectic (A):
 - $L \leftrightarrows \gamma + Fe_3C$
 - Eutectoid (B): $\gamma(0.76 \text{ wt\%C}) \Leftrightarrow \alpha(0.022) + \text{Fe}_3\text{C}(6.7)$

Result: Pearlite = alternating layers of α and Fe₃C phases (lamellar structure)

Fig. 11.26, Callister & Rethwisch 9e. (From Metals Handbook, Vol. 9, 9th ed., Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Microstructure of eutectoid steel (pearlite)

The eutectoid steel exhibits a structure similar to the eutectic structure discussed earlier, that is a lamellar structure consisting of (α ferrite and Fe₃C cementite). The thickness ratio of layers found in eutectoid steel is 8(α):1(Fe₃C).

상변태 속도론 (예: Pb,Sn system)

- ■Recall lamella structure. 평형 상태에서의 α상과 β상의 분율 (부피 분율, volume fraction)을 상태도(phase diagram)에서 찾을 수 있다.
- ■그리고 lamella 구조가 생성되기 위해서는 각 α, β 상에 주어진 분율을 맞추기 위해 Pb, Sn 원소가 <mark>확산(diffusion)</mark>되어야 한다. 확산은 <mark>시간과 온도</mark>에 영향을 받는다.
- 따라서 이러한 형태의 상의 변화(상변태)는 '시간'이 든다. 그리고 상변태를
 완료할때까지 필요한 시간은 상변태가 발생하는 온도에 영향을 받는다 (상변태
 속도론)

상변태 속도론

■아래는 Fe-C binary system에서 austenite가 cementite와 ferrite로 상변태가 발생하는 것을 설명하는 모식도이다 (eutectoid reaction; one solid -> two diff. solids)

■Cementite는 intermetallic compound; Fe 와 C 가 정해진 비율(3:1)로 정확한 비율로 존재해야 한다. 따라서 적절한 위치로 Fe와 C가 존재해야 한다 – diffusion 필요;

■Diffusion은 시간과 온도에 지배되는 mechanism 이다.

■따라서 위의 상변태는 '시간'에 영향을 받는다! 즉, 위의 상변태가 발생하기 위해서는 일정한 '시간'이 필요하다.

-그렇다면 상변태에 필요한 시간이 늘거나, 줄어드는 조건이 있을것이다. 상변태의 속도에 영향을 주는 인자? 혹은 상변태의 속도를 바꿈으로 인해서 어떤 현상이 생길까?

상변태 과정

- ■앞서 설명했듯, 상변태는 순간적으로 발생하지 않는다. 다른 한편으로는 주어진 환경 (T, C, P)에 따라 '평형상'이 달라진다. 따라서 기존의 환경(*T*₁, *C*₁, *P*₁)이 바뀌어 새로운 환경(*T*₂, *C*₂, *P*₂) 이 주어질 때, 기존에 평형했던 상이 새로운 환경에 더욱 알맞는 상으로 '변태'될 수 있다. 그러한 상변태의 과정은 크게 두가지 단계로 나타난다.
- ■1. 핵생성 (nucleation)
 - 새로운 환경에 맞는 평형상태의 상이 매우 작은 알갱이 형태로 나타나는 단계 (~ 수백개의 원자들로 이루어진 작은 알갱이; 또는 핵nuclei; 혹은 seeds 라고 부름)
- ■2. (새로운 상의) 성장 (growth)
 - 그러한 핵들이 더 큰 덩이로 자라는 단계.
- ■3. 종결 조건? 평형상태에서 나타나는 상의 평형 분율이 이루어지면 종결 (평형 상태도에서 알 수 있다).

근원상 polycrystal austenite의 grain boundary에서 핵이 생성후 성장하는 모습

<u>**근원상: parent phase*</u> (기존의 환경에서 안정했던 상)

핵성성

- ■핵생성은 두가지 형태로 나뉜다: 분류의 기준은 '<u>어디에서 핵생성이 발생하느냐</u>'
 - 1. 균일 (homogeneous) 핵생성
 - Nuclei form uniformly (or, in other word, randomly) throughout the parent phase (근원상).
 - 2. 불균일 (heterogeneous) 핵생성
 - Nuclei form preferentially at structural inhomogeneities:용기의 벽, 불용성 불순물, grain boundary, dislocation 등등이 핵생성 장소(site)를 제공한다.

■ <mark>균일 핵생성</mark>부터 논의하고 그 원리를 익혀 불균일 핵생성에 대해 확대/적용하는 방식으로 다뤄보자.

균일/불균일 핵생성 비교

Q. 탄산수의 liquid상 (liquid solution)이 이산화탄소 gas상 (gas + water mixture) 으로 상변태.. nuclei 가 계면(interface)에 생기는 이유는?

https://en.wikipedia.org/wiki/Nucleation#/media/File:Nucleation_finger.jpg

GFE (Gibbs Free Energy)

- ■핵생성 이론에 대해 논의하기 위해서 가장 처음 여러분은 열역학 매개변수인 자유에너지 (Gibbs Free Energy, G로 표기)에 대해 간략히 이해해야 한다.
- G는 시스템의 내부에너지 (Enthalpy, H로 표기), 그리고 원자(혹은 분자)들의 무질서도 (entropy, S로 표기)에 의해 결정된다. 즉 G는 H와 S가 변수인 함수로 표현 가능하다: G=f(H,S) - 혹은 G≡G(H,S)
- ■상들마다 다른 G값을 가지고 있으며, G값들은 온도/압력/조성(T,P,C)에 따라 변한다.
- ■G는 해당 상이 얼마나 주어진 온도/압력/조성 조건 아래에서 '안정적'인지를 나타내주는 지표이다 – G가 낮을 수록 안정.
- ■따라서 주어진 (T,P,C)에서 발생(혹은 존재) 가능한 상들 중에 G값이 가장 낮은 상이 '평형'상태 에 존재한다 – <u>만약 두 상이 같은 G값을 가지면? 공존</u>...

GFE (Gibbs Free Energy)

■주어진 환경조건 (T,P)에서 한 시스템의 조성(C=fixed)에 의해 액체와 고체 상의 평형 상태를 각 상의 GFE를 비교하여 결정할 수 있다. 각 상의 GFE 를 비교하여 상대적으로 더 안정한 상을 찾을 수 있다.

단위 부피당 ΔG^{액상→고상} 값을 표현하기위해 아래첨자 v를 붙여: ΔG^{액상→고상}

G: (단위 부피당) Gibbs 자유 에너지 (GFE)

GFE (Gibbs Free Energy)

압력과 조성은 고정된 조건 (Fixed P and C)

경계선상에서는:
$$G_v^{\mathrm{qub}} = G_v^{\mathrm{qub}}$$
 따라서 $\Delta G_v^{\mathrm{qub}} = \Delta G_v^{\mathrm{qub}} = 0$

응고과정∆G^{액상→고상}계산모형 -개요

아래 모형을 사용해서 논의해보자

 핵이생성됨으로써 다른 새상(new phase)이생겨 기존 상의 일정 부피를 차지 했을 뿐만 아니라, 그 두상 사이의 '상경계'도 생겼다.
 두 상의 계면도 고유의 에너지를 가지고 있다: ΔG^{액상→고상} > 0 (양수값)
 따라서 액상에서 고상으로 상변태에 따른 자유에너지 차이는 상경계에 의해 발생하는 기여(contribution)도 고려해야한다.

 $\Delta G^{\mathrm{qd} \diamond \to 2 \diamond} = \Delta G_v^{\mathrm{qd} \diamond \to 2 \diamond} \times \# \Pi + \Delta G_{\mathcal{Z} \mathcal{A}}^{\mathrm{qd} \diamond \to 2 \diamond} \times \mathfrak{B}$ 위 모형에서 부피와 경계면을 구하면: $\Delta G^{\mathrm{liquid} \to \mathrm{solid}} = \Delta G_v^{\mathrm{liquid} \to \mathrm{solid}} \times \frac{4}{3} \pi r^3 + \Delta G_{\delta \mathcal{Z} \mathcal{A}}^{\mathrm{liquid} \leftrightarrow \mathrm{solid}} \times 4\pi r^2$ 더욱 간략하게 표현하자면 $\Delta G = \frac{4}{3} \pi r^3 \Delta G_v + 4\pi r^2 \gamma$

응고 과정 ΔG^{액상→고상} 계산 모형 – 두가지 기여 요소

■ $\Delta G = \frac{4}{3}\pi r^3 \Delta G_v + 4\pi r^2 \gamma$ (액상 → 고상 상변태 발생하려면 $\Delta G_v < 0$; 앞서 $\gamma > 0$)

핵의 크기(반지름)가 증가함에 따라, 부피(당) 자유에너지 ΔG_v, 표면(당) 자유에너지 γ가 위의 그래프에 나타나듯 핵의 크기(r)에 따라 다르게 변화한다.

- 그 둘의 합(즉 위의 녹색 곡선)이 핵의 크기에 따라 변하는 것을 살펴보자. - 주의: 액상 → 고상 상변태가 발생하기 위해서는 Δ*G* 가 음수여야 한다!

응고과정 ΔG^{액상→고상}계산 모형 - 임계값

■ΔG 값이 최대치(ΔG*)가 되는 고상 입자(solid particle)의 크기가 존재한다. 그리고 그에 해당하는 <mark>임계 고상 입자(핵)의 반지름(r*)</mark>이 존재한다.

 액상에서 입자(원자나 분자)가 모여 고체가 될 때, 작은 크기의 핵들은 뭉칠 수록 자유에너지가 증가한다. 하지만 핵이 '임계(critical)' 크기를 넘어서면, 그 크기가 커질수록 ΔG^{액상→고상}가 감소한다 – 즉 자발적으로 액상은 고상으로 변태한다.

■이렇게 임계 크기(critical size)에 도달하지 못한 입자를 embryo 로 구분하여 명칭하고, 임계값 이상의 크기를 가진 입자를 핵(nucleus; 복수형: nuclei)이라 구분하여 부르기도 한다.

■ΔG*를 활성화 자유에너지(activation free energy)라고 부르며, 안정적으로 핵이 성장할 수 있기 위해 필요한 자유에너지다. (혹은 핵이 성장하기 위해 넘어야 할 energy barrier로 생각할 수도 있다 – 왜냐면 energy barrier 만큼의 외부 에너지가 주어져야만 핵이 성장할 수 있으니까...)

 핵은 생성 직후 그 크기에 따라 수축이냐 성장이냐를 판가름하는 과정을 거친다. 다양한 크기의 핵이 생겨나고 소멸하기를 되풀이 한다. 따라서 핵이 얼마나 자주 생기느냐도 응고 과정에서 중요하게 살펴 봐야 할 점이다 (추후에 ν_a 논의)

응고과정∆G^{액상→고상}계산모형-임계값

 $\Delta G = \frac{4}{2}\pi r^3 \Delta G_v + 4\pi r^2 \gamma$ ■위의 정의를 활용해서 최대 ΔG값을 구하기 위해 우선 $\frac{d(\Delta G)}{dr} = 0$ 인 지점에서의 r 값을 구해야 한다 (ΔG_v와 γ는 r에 무관). $= \frac{d(\Delta G)}{dr} = 3 \times \frac{4}{3} \pi r^2 \Delta G_v + 2 \times 4 \pi r \gamma = 0$ ■위 조건을 만족하는 특정한 r 값을 r*로 표기하여 r* = $-\frac{2\gamma}{\Lambda c}$ ■r^{*} = - ^{2γ}/_{ΛGu} 위 조건을 만족하는 r값을 r^{*} 로 표기. 그런데 ΔG^{*} = ΔG(r = r*) 따라서 $\Delta G^* = \frac{4}{3}\pi (r^*)^3 \Delta G_v + 4\pi (r^*)^2 \gamma = \frac{4}{3}\pi \left(-\frac{2\gamma}{\Lambda G_v}\right)^3 \Delta G_v + 4\pi \left(-\frac{2\gamma}{\Lambda G_v}\right)^2 \gamma$ $= -\frac{4}{3}\pi \frac{8\gamma^{3}}{(\Lambda G_{v})^{2}} + 4\pi \frac{4\gamma^{3}}{(\Lambda G_{v})^{2}} = \left(-\frac{32}{3} + 16\right)\pi \frac{\gamma^{3}}{(\Lambda G_{v})^{2}} = \frac{16}{3}\frac{\pi\gamma^{3}}{(\Lambda G_{v})^{2}}$

□ ΔG_v 는 온도에 따른 함수다. (왜냐면 $G^{액 \delta}, G^{고 \delta}$ 이 온도에 따른 함수라서) $\Delta G_v = \frac{\Delta H_f(T_m - T)}{T_m}$ (1)

 $\Delta \mathrm{H_{f^{:}}}$ 용융 잠열 (응고시에 발생하는 열); T $_{\mathrm{m}}$: melting temperature

□앞서 우리가 살펴본 모형에서 ΔG^* 는 다음과 같이 도출되었다. $\Delta G^* = \frac{16}{3} \frac{\pi \gamma^3}{(\Delta G_v)^2}$ (2)

(1) = (2) 에 대입하면 $\Delta G^* = \frac{16\pi\gamma^3}{3} \left[\frac{T_m}{\Delta H_f(T_m - T)} \right]^2 = \frac{16\pi\gamma^3(T_m)^2}{3(\Delta H_f)^2} \frac{1}{(T_m - T)^2}$ $(1) = r^* = -\frac{2\gamma}{\Delta G_v}$ 에 대입하면 $r^* = -\frac{2\gamma}{\frac{\Delta H_f(T_m - T)}{T_m}} = -\frac{2\gamma T_m}{\Delta H_f} \frac{1}{(T_m - T)}$

따라서 ΔG*과 r* 모두 T_m – T 값에 반비례 함을 알 수 있다.

즉 평형 응고 온도(T_m)보다 더 낮은 온도에서 응고가 진행된다면 (i.e., $T_m - T$ 값이 커진다면) ΔG^* 과 r^* 이 더욱 낮아져 핵생성이 쉬워진다.

Recap: ΔG^* 는 energy barrier, r^{*}는 고체 입자의 자발적 성장을 위해 필요한 임계 크기.

응고 모형 - n*, v_d의 온도 영향 (1)

응고 모형 - n*, v_d의 온도 영향 (2)

응고 모형 – 핵학산의 온도 영향

응고 모형 고찰

■이때까지 우리는 구형(spherical)의 핵 모양을 가정하여 논의하였다. 하지만 우리가 논의한 기본 원리들은 핵이 어떠한 모양이어도 동일하게 적용 가능하다.

우리는 응고 - 즉 액상에서 고상으로의 변태과정 - 을 살펴보았다. 하지만 이 논의에서 얻은 결과는 다른 종류의 변태 - 즉 고체에서 기체로, 혹은 고체에서 또 다른 고체로 변태하는 - 과정에도 동일하게 적용된다.

■물론 우리가 사용한 매개변수는 변태의 종류에 따라 달라질 수 있다. 우리가 앞으로 더욱 살펴볼 고체-고체 변태에서는 새로운 상의 형성에 수반되는 부피의 변화에 따른 변형률도 발생할 수 있다.

실제 응고 온도 (*T_m*) 보다 낮은 온도에서 감지할 만한 핵생성 (상변화의 첫번째 단계)이 나타나는 것을 알 수 있다. 이러한 현상을 **과냉각 (supercooling, undercooling)** 이라고 한다. 균일 핵생성에 대한 과냉각은 매우 크다 (수백 K) – Table 12.1 참고

불균일 핵생성 모델

■균일 핵생성을 위한 과냉각은 매우 크지만 (수백 °C), 실제 실험적으로 관찰되는 핵생성에 필요한 과냉각은 단지 수 °C이다. 그 이유는 핵이 표면이나 계면에서 생성되어 균일 핵생성 모델에서 살펴 본 값보다 더욱 낮은 표면에너지가 필요하고 따라서 전체 핵생성 활성화에너지(activation energy, 혹은 energy barrier)가 낮아지기 때문이다.

■다음과 같은 모형(model)을 활용하여 논의해보자.

액상 → 고상 변태 과정에서 핵이 편평한 표면위에 생성되는 '불균일 핵생성 모델'

Surface or interface

고상이 표면에 완전히 '젖어' 부착 되어있는듯 보인다. 세가지 종류의 계면이 존재한다(Solid/Liquid, Interface/Liquid, Interface/Solid) SL과 interface 사이의 각도(젖은 각, wetting angle): 벡터 γ_{SL}와 γ_{SI} 의 사잇각

불균일 핵생성 모델

 $\therefore \Delta G_{\text{hetero}}^* = \Delta G_{\text{homo}}^* \ S(\theta)$

균일/불균일 핵생성 비교

$$r_{hetero}^{*} = -\frac{2\gamma_{SL}}{\Delta G_{v}}$$
$$r_{homo}^{*} = -\frac{2\gamma}{\Delta G_{v}}$$

 $\Delta G_{\text{hetero}}^* = \Delta G_{\text{homo}}^* S(\theta)$

 $S(\theta) = 0: \Delta G^*_{hetero} = 0:$ heterogeneous nucleation 이 매우 선호됨 $S(\theta) = 1: \Delta G^*_{hetero} = \Delta G^*_{homo}$ 딱히 선호되는 nucleation 방법 없음

A B C S Wetting angle θ 값의 변화에 따른 nucleation 거동 변화 매우 heterogeneous nucleation이 선호됨

Wetting angle 감소; 불균일 핵생성 경향 증가

균일/불균일 핵생성 비교

Q. 냄비의 바닥, 혹은 벽면에서 먼저 수증기 방울이 생겨난다. 그 이유는?

Nucleation rate

상변태 과정 Recap

•상변태의 과정은 크게 두가지 단계로 나타난다.

■1. 핵생성 (nucleation)

- 새로운 환경에 맞는 평형상태의 상이 매우 작은 알갱이 형태로 나타나는 단계 (~
 수백개의 원자들로 이루어진 작은 알갱이; 또는 핵nuclei; 혹은 seeds 라고 부름)
- ■2. (새로운 상의) 성장 (growth)
 - 그러한 핵들이 더 큰 덩이로 자라는 단계.

■3. 종결 조건? 평형상태에서 나타나는 상의 평형 분율이 이루어지면 종결 (평형 상태도에서 알 수 있다).

성장

- 임계 크기 이상의 핵들은 '성장' 단계를 거쳐 안정화된다. 새로운 상 입자의 성장과 동시에 핵생성은 계속되지만, 새로운 상으로 이미 변한 구역에서는 핵생성이 발생하지 않는다. 성장은 새로운 상들이 성장과정에서 만나게 되면 종료된다.

■성장 단계는 <mark>확산기구(diffusion mechanism)</mark>에 지배받는다. 따라서 확산속도(diffusion rate)가 성장 속도(Ġ)를 결정한다. 따라서 성장 속도는 다음의 형태로 표현된다:

$$\dot{\mathbf{G}} = C \exp\left(-\frac{Q}{kT}\right)$$

■ Q: activation energy, C: pre-exponential parameter – 둘 다 온도에 무관한 상수.

전체 변태 속도와 조밀/조대 조직

Rate

결과 상(product phase) 입자의 크기는 변태 온도(T)에 의존한다. *T_m* 부근에서 더욱 큰 알갱이가 생성된다. *T_m*보다 낮은 온도일 수록 growth rate(Ġ)가 낮아진다. 왜냐면 낮은 온도일 수록 확산이 느려 알갱이의 크기가 자라기 더 어렵기 때문. 하지만 *T_m* 부근에서는(즉 높은 온도에서는) 그 보다 더 낮은 온도와 비교했을 때 보다 입자 생성속도(Ŋ)가 낮다. 따라서 많은 수의 알갱이가 존재 하지 못한다.

변태속도, 변태시간, 비평형상

고체 상태 변태의 속도론 (kinetics)

- ・앞서 "액체→고체" (응고) 상변태에 관한 핵생성, 성장 및 변태 속도의 온도 의존성에 중점을 두었다. 변태 속도의 시간 의존성(변태의 속도론, transformation kinetics)은 앞서 다루었던 열처리공정에서 다양한 공정 변수를 좌우한다. 그리고 우리는 앞으로
 "고체a→고체b" 타입의 상변태로 제한하여 논의하겠다 (우리의 주 관심 대상 재료는 구조 재료이며, 이는 고체 상태에서 상변태가 많이 발생한다 – 열처리 공정에서도 한 고체에서 또 다른 고체로 상변태 발생 가능)
- ■상변태 속도론(transformation kinetics)에서 상변태의 속도를 파악하기 위해서는 온도를 고정시킨 상태에서 상변태의 량(정도)을 시간에 따른 함수로 표현(혹은 측정)한다.
- ■상변태의 정도를 시간에 따라 실험을 통해 측정하는 방법으로는:
 - X-ray diffraction (microscopy) snapshots of various samples (thus requiring many specimens)
 - Real-time (in-situ) monitoring of changes in electrical conductivity (different phases have different electrical conductivity) – only a single specimen is needed.
 - Measuring propagation of sound waves only a single specimen is needed.

Rate of phase transformation

Rate of recrystallization (pure Cu)

Reprinted with permission from Metallurgical Transactions, Vol. 188, 1950, a publication of The Metallurgical Society of AIME, Warrendale, PA. Adapted from B. F. Decker and D. Harker, "Recrystallization in Rolled Copper," Trans. AIME, 188, 1950, p. 888.

변태속도론에 사용되는 Avrami 식은 재결정의 속도론에도 사용가능하다 (위 구리의 경우를 참고). 재결정의 속도 또한 관례적으로 50% 재결정 완료에 걸린 시간으로 정의한다.

예제 12.2 변태 속도 계산

□Q. Avrami 식 **y** = 1- exp (-ktⁿ) 로 austenite에서 ferrite로의 상변태 속도가 결정(determine)된다. 이때 n 값이 3.1로 알려져있다. 20분이 경과한 후 새로운 상의 분율이 0.3(즉 30% 상변태 완료)라면, 해당 상변태 속도는 얼마인가?

■중요한 정보 하나: 상변태 속도는 관례적으로 50% 변태가 발상할 때까지 걸린 시간의 역수로 표현한다. 우선 Avrami 식을 사용하여 t_{0.5}를 구하자:

 $0.5 = 1 - \exp(-kt_{0.5}^{3.1}) \to 0.5 = \exp(-kt_{0.5}^{3.1}) \to -kt_{0.5}^{3.1} = \ln(0.5)$

$$\rightarrow t_{0.5} = \left(-\frac{\ln(0.5)}{k}\right)^{1/3.1}$$

■또 다른 정보하나: 20분뒤 30% 상변태 완료 즉

 $0.3 = 1 - \exp(-k(20 \text{ [min]})^{3.1}) \rightarrow -k(20 \text{ [min]})^{3.1} = \ln(0.7) \rightarrow k = \frac{-\ln(0.7)}{(20 \text{ [min]})^{3.1}}$

■위 결과를 결합하면:

Rate of transformation (by convention) = $\frac{1}{t_{0.5}} = 0.04035$ $\left[\frac{1}{\min}\right]$

준안정 상태(metastable state)와 평형상태 (equilibrium state)

■Recall that phase transformation is controlled by Temperature, (chemical) Composition and Pressure. T,C,P 중에서 실제 제조 공정상에서 금속의 상변태를 조절하는데 적절한 변수는 '온도'이다.

■(평형) 상태도(phase diagram)는 온도, 압력, 그리고 화학조성으로 이루어진 환경 조건에서 어떠한 상이 평형 상태인지 알려준다. 우리는 1) <u>상변태가 온도 조건에 따라 핵생성과 성장의</u> <u>조건이 달라지는 것</u>, 그리고 2) <u>온도에 따라 상변태의 속도가 좌우되는 것을 살펴보았다</u>. 적절한 온도에서는 상변태 속도가 매우 느려질 수 있고 따라서 평형 상태의 상으로 변화는데 매우 오랜 시간이 걸릴 수 있다. (slide #32 참고)

특히 고체 상태의 경우 상변태에 필요한 확산 현상이 매우 더디게 일어나 평형 상태의 구조가 만들어지는 것이 드물다. 따라서, 고체상간의 상변태 형상에서의 평형 상태는 가열과 냉각이 극한적으로 느리고 비현실적인 속도로 진행될 경우에만 관찰 가능하다.

■ 평형 냉각이 아니라면 supercooling 평형 가열이 아니라면 superheating이 발생.

■ 냉각 속도가 빠를수록 과냉과 과열 현상이 크게 일어난다.

■공업적으로 중요한 많은 합금은 초기와 평형의 중간 상태로 나타나는 경우가 많다 (때로는 이러한 준안정 상태의 상을 가진 재료의 물성이 필요할 때도 있다).
Summary

■상태도 리뷰

- ■상변태 과정
 - 핵생성 (균일/불균일 모델 비교) 응고 모형.
 - ■성장
 - 조밀/조대 조직이 발생 조건 비교
- ■상변태 변태속도론
- ■준안정 상태