Orientation

메카트로닉스 재료개론 (MFA9008)

창원대학교 신소재공학부 정영웅

yjeong@changwon.ac.kr https://youngung.github.io https://github.com/youngung

Internal Policy

- □지각이란
 - ▶수업 시작보다 10분 초과하여 늦는 경우
 - ▶수업 후 지각한 인원은 면담후 수정.
- □결석이란
 - ▶수업 시작에서 30분 초과하여 나타나거나, no-show
- □평가
 - ▶출결 (10%)
 - ❖지각 (0.5 시간): 1회X 1점 차감
 - ❖결석 (1.5 시간): 1회X 3점 차감
 - ▶과제 (20%)
 - ➤ Mid-term (30%)
 - > Final (40%)

Internal Policy (continued)

- 교교재
 - ▶W. Callister Jr. 재료과학과 공학
 - ➤ Materials Science and Engineering: An Introduction
- □강의 자료

https://youngung.github.io/teaching/ 에서 다운로드

강의 자료는 수시로 업데이트/변경될 수 있습니다 (유의)

- ■Interactions
 - ▶강의중
 - ❖ 구두 질문, 혹은 포스트잇
 - ▶강의후
 - ❖ 면담
 - Email: yjeong@changwon.ac.kr
 - ❖ Office: 52-208

Objectives of today's lecture

- Understand Materials Classification
- Understand fundamental 'Material Properties'
- Understand Material Selection Process

^{*}Metallic materials are primarily discussed

^{**} The structures of investigation may be in various scales (micro, nano, ...)

MSE: an Introduction

- ☐ Professor Turner teaches a similar lecture using the same textbook but fully in English.
- ☐ This lecture covers a wide range of topics related with Materials Science & Engineering.
- ☐ More advanced lectures require the basic understandings on various aspects discussed in this lecture I am saying that this lecture is very very important!

Materials Science and Engineering

- □Engineering (공학이란?)
 - The branch of science and technology concerned with the design, building, and use of engines, machines, and structures.
- ☑Materials Science (재료과학)
 - >Study the relationships between the structures and properties of materials.
 - >Structure exist in various scales (nano-, micro-, macro)
- ☑Materials Engineering (재료공학)
 - > Design/engineer the structure that meets the set of desired properties.
 - ➤ Create new products using existing materials / develop technique for processing materials

History of human tied to history of materials

돌, 노끈, 나무

청동: 구리+주석

Cast Iron + 목재

*화순 대곡리 청동기 일괄, 국보 제 143호

Materials for engineered devices/tools

Raw materials in nature

Materials Science?

- New materials?
- Understand what determines a material property
- Develop a way to 'improve' it using the knowledges

Materials for engineered devices/tools

- Raw materials in nature. Engineered materials
- ☐ Engineering devices / products are usually consisting of various components
 - Cars made of metals, polymers ...
 - ➤ Mobiles phones?
 - > Even hammers?
 - Combinations of various materials (why?)
- Engineered Materials constitute the world
 - Vehicles, Aircrafts (transportation)
 - Mobile devices (communication)
 - Bridges/Buildings (Infrastructure)

Raise your mobile device and tell me what materials you see

- Ceramics
- Metals
- Polymers
- Composites
- Advanced materials
 - **≻**Semiconductor
 - **Biomaterials**
 - >Smart materials
 - ➤ Nano-engineered materials

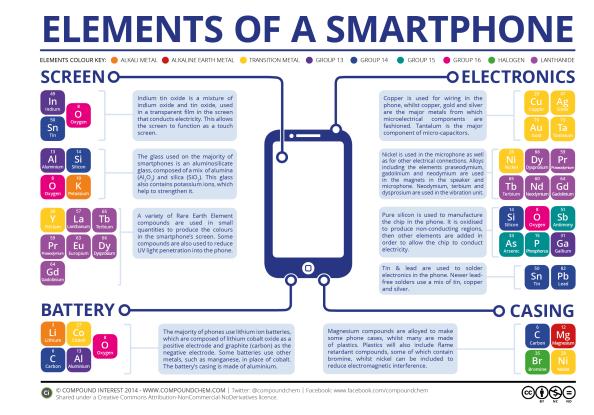


Image from

http://www.compoundchem.com/2014/02/19/the-chemical-elements-of-a-smartphone/

Elements

Explore the chemical elements through this periodic table																			
Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period 1	1 H 1.008																		2 He 4.0026
	3	_4												5	6	7	8	9	10
2	Li	Ве												В	С	N	0	F	Ne
	6.94	9.0122												10.81	12.011	14.007	15.999	18.998	20.180
	11	12												13	14	15	16	17	18
3	Na	Mg												Al	Si	Р	S	CI	Ar
	22.990	24.305	١,	0.1	00	00	0.4	05	00	0.7	00	00	00	26.982	28.085	30.974	32.06	35.45	39.948
	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.63	74.922	78.96	79.904	83.798
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
	85.468	87.62		88.906	91.224	92.906	95.96	[97.91]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	55	56		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[208.98]	[209.99]	[222.02]
	87	88		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	[223.02]	[226.03]		[262.11]	[265.12]	[268.13]	[271.13]	[270]	[277.15]	[276.15]	[281.16]	[280.16]	[285.17]	[284.18]	[289.19]	[288.19]	[293]	[294]	[294]
			57	58	59	60	61	62	63	64	65	66	67	68	69	70			
*Lanthanoids		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb			
			138.91	140.12	140.91	144.24	[144.91]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05			
				89	90	91	92	93	94	95	96	97	98	99	100	101	102		
**Actinoids			**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			(000,00)		201.01	000.00	(00 m o m)	70.11.007	50.40.001	70 J. T. O. T.		TOTA 001	[050.00]	70 FF 401					

Cases of material failures

How to prevent material Failure?

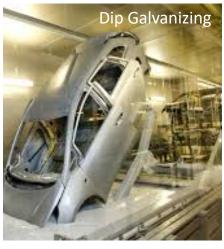
Example 1: Landing gear

Materials used for aircrafts usually are lightweight metals (several types of aluminum alloys are most widely adapted).

However, a large portion of a landing gear is made of steels. By the way, steels are a lot heavier than aluminum.

Then, why do the aircraft manufacturers decide to use 'steel' rather than aluminum?

Example 2: Housing for mobile devices



Example 3: Car-body?

Example 4: beverage container

The role of container? (Questions)

Advantages and Disadvantages? (Questions)

Materials "Science" and Materials "Engineering"

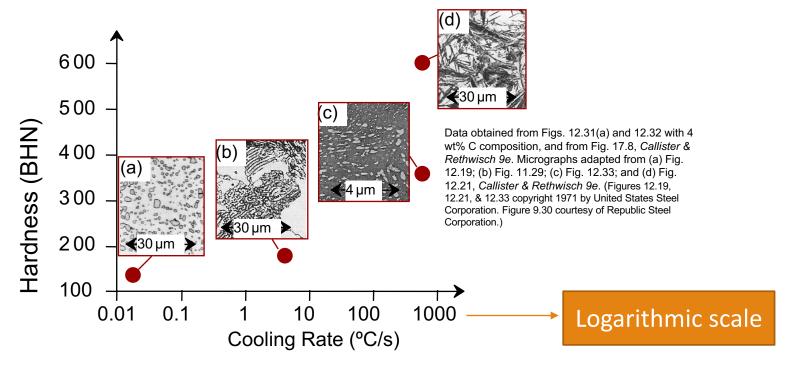
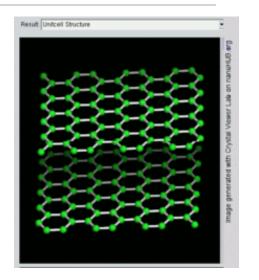
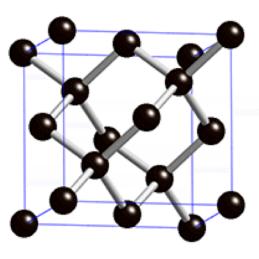


Figure 1.1 The four components of the discipline of materials science and engineering and their interrelationship.

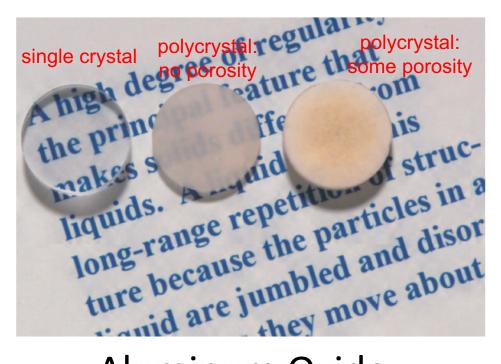
Example: Mechanical (microstructure)

Properties depend on structure
ex: hardness vs. (micro) structure of steels




Processing can change structure
ex: structure vs cooling rate of steel

Example: Mechanical (crystal structure)



Examples: Optical

Same crystal structure but different microstructure (porosity)

Aluminum Oxide

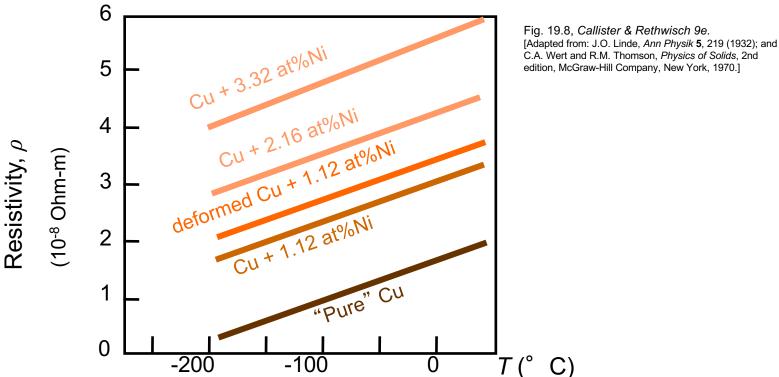


Figure 1.1 The four components of the discipline of materials science and engineering and their interrelationship.

Examples: Electrical

Electrical Resistivity of Copper:

C.A. Wert and R.M. Thomson, Physics of Solids, 2nd edition, McGraw-Hill Company, New York, 1970.1

- Adding "impurity" atoms to Cu increases resistivity.
- Deforming Cu increases resistivity.

DETERIORATIVE

- Stress & Saltwater...
 - -- causes cracks!

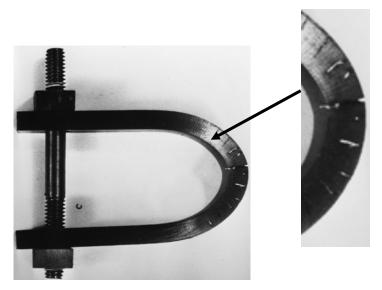
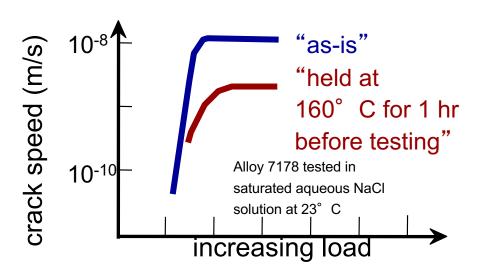



Fig. 18.21, Callister & Rethwisch 9e. (from Marine Corrosion, Causes, and Prevention, John Wiley and Sons, Inc., 1975.)

Heat treatment: slows crack speed in salt water!

Adapted from Fig. 11.20(b), R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" (4th ed.), p. 505, John Wiley and Sons, 1996. (Original source: Markus O. Speidel, Brown Boveri Co.)

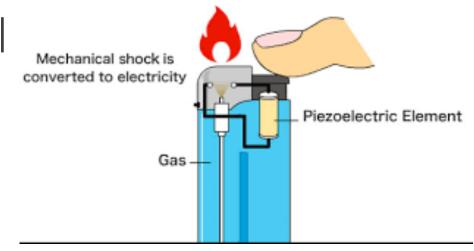
What would be your future role?

- Imagine that you are a team member working in a mobile phone manufacturing company. Your mission, as a senior material engineer, is to correctly choose materials to be used in a new mobile phone targeted to launch in year 2020.
 - ➤ What factors should be considered?
 - ➤ Certain performance guidelines?
 - ➤ You are expected know what materials are available from the material suppliers
- Materials Classifications
 - > Metals
 - **≻**Ceramics
 - **>** Polymers
 - ➤ New materials?

Types of Materials

Metals:

- Strong, ductile
- High thermal & electrical conductivity
- Opaque, reflective.
- Polymers/plastics: Covalent bonding → sharing of electrons
 - Soft, ductile, low strength, low density
 - Thermal & electrical insulators
 - Optically translucent or transparent.
- Ceramics: ionic bonding (refractory) compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides)
 - Brittle, glassy, elastic
 - Non-conducting (insulators)


What is a material property?

- ■Strength?
- ☐ Density?
- ☐ Electric/thermal conductivity

Stimuli and response

■Example: 밀도와 무게의 차이

What properties matter?

- Mechanical
- Electro-magnetism
- Chemical
- Thermal
- Optical
- **...**

Reading Assignment

☐ Chapter 1 of the text book.

