VPSC history file

Youngung Jeong

Form of VPSC history file

80	3 0.	.01 298	3.
* boundary conditions			
	0	1	1
	0	0	1
	0	0	1
	0.0005	0.	0.
	0.	0.0005	0.
	0.	0.	-0.001
	1	1	1
		1	1
			0
	0.	0.	0.
		0.	0.
			0.
		0.	1 0 0. 0.

$$\Delta \varepsilon_{33} = 0.01, \# step: 80 \rightarrow Final \ \varepsilon_{33} = 0.8$$

$$\begin{bmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{bmatrix} \qquad \qquad L_{ij} = \begin{bmatrix} \text{unknown} & 0 & 0 \\ \text{unknown} & \text{unknown} & 0 \\ \text{unknown} & \text{unknown} & -0.001 \end{bmatrix}$$

$$\varepsilon_{ij} = \begin{bmatrix} \text{unknown} & \text{unknown} & \text{unknown} \\ \text{unknown} & \text{unknown} & \text{unknown} \\ \text{unknown} & -0.001 \end{bmatrix}$$

$$arepsilon_{ij} = egin{bmatrix} \mathrm{unknown} & \mathrm{unknown} & \mathrm{unknown} \\ & \mathrm{unknown} & \mathrm{unknown} \\ & \mathrm{unknown} & -0.001 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ & \sigma_{22} & \sigma_{23} \\ & & \sigma_{33} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ & \sigma_{22} & \sigma_{23} \\ & & \sigma_{33} \end{bmatrix} \qquad \qquad \sigma = \begin{bmatrix} 0 & 0 & 0 \\ & 0 & 0 \\ & & \text{unknown} \end{bmatrix}$$

$$L_{ij} = \dot{F}_{ik} F_{kj}^{-1}$$
$$\dot{\varepsilon}_{ij} = \frac{1}{2} (L_{ij} + L_{ji})$$

$$\dot{\varepsilon}_{ij} = \frac{1}{2}(L_{ij} + L_{ji})$$

$$\dot{\omega}_{ij} = \frac{1}{2}(L_{ij} - L_{ji})$$

$$\dot{\omega}_{ij} = \frac{1}{2} (L_{ij} - L_{ji})$$

Rotation of crystal

Process number 4.

Transformation matrix that is used to rotated the polycrystal.

 $g^{sa\leftarrow ca}$: orientation of individual grain

You are to impose below operation:

$$\mathbf{g}^{sa'\to ca} = \mathbf{R}^{sa'\leftarrow sa}\mathbf{g}^{sa\leftarrow ca}$$

$$\boldsymbol{g}_{ij}^{sa'\to ca} = \boldsymbol{R}_{ik}^{sa'\leftarrow sa} \boldsymbol{g}_{kl}^{sa\leftarrow ca}$$

 $R^{sa' \leftarrow sa}$; transform an old coordinate system sa to a new sa'

Final term

- A statistical representative population of discrete orientation sampled from an Interstitial-free steel will be given.
- It's single crystal will be given.
- Following should be conducted based on these two:
 - Tensile along axis 1 for 0.5 axial strain. (Tension along RD)
 - Tensile along axis 2 for 0.5 axial strain. (Tension along TD)
 - Tensile along axis rotated from axis 1 in the plane of 1 / 2 for 0.5 axial strain (45 degree from RD)
 - Plot pole figures (the initial and after tensions)
 - Plot Stress-strain curves (RD, TD, 45)