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Mathematical treatment on polycrystal behavior
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Some classical models

Sachs (or more correctly static model; often is assumed for Schmid factor estimations)
o0 = 0 regardless of orientation
Which leadstoo = o
Then, one could obtain & from constitutive law (Linear Hooke’s law € = M: o)

Ssumming up Xo o €87 (= (g))

But it turns out (&) # € (compatibility is not satisfied; (@) = @ is naturally satisfied.

Taylor model
£ = 0 regardless of orientation
Which leadsto e = €
Then, one could obtain o from constitutive law (o0 = C: &)

summing up Tg ™" 82N (= (e))

But it turns out (&) # € (compatibility is not satisfied; (@) = @ is naturally satisfied.



Self-consistent approach

Self-consistent approach

£ # 0 and @ # 0, both of which are usually determined by following
the Eshelby approach (& = M: &)
M={-5)"1sM where S is the Eshelby tensor
Both strain compatibility and force equilibrium are simultaneously satisfied

Important contributions

G. |. Taylor (1938)
Upper bound

Sachs (1928) — Static model
Lower bound

Kroner (1958) — self-consistent scheme for elasticity
R. Hill’s self-consistent scheme (1965) — elastoplastic
Molinari et al. (1987) — Anisotropic inclusion embedded in isotropic HEM

Carlos Tomé and Ricardo Lebensohn (1993) — anisotropic inclusion in anisotropy HEM



Self-consistent estimation of macroscopic properties

7 Self-consistent estimation
€ #+ 0 and ¢ # 0, which is usually determined following
the Eshelby approach (& = M: &)
M=O-S)"1s:M where S is the Eshelby tensor
At the same time, compatibility and force equilibrium are simultaneously satisfied

Elastic self-consistent estimation
o = C: & for various grains in various orientations
o = C: € for polycrystal consisting of such grains.
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For polycrystals consisting of single crystal in various orientations?
Can we relate E of each individual grains to E?
Can we obtain E that satisfies
e=E:o
which can be a function of E of grains in various orientation while satisfying
€ =E:0and (¢) = E: (o), and (&) = E, (6) = &7
That’s corresponding to finding self-consistent E that represents the polycrystal.



Self-consistent estimation of macroscopic properties

7 Self-consistent estimation
€ #+ 0 and ¢ # 0, which is usually determined following
the Eshelby approach (& = M: &)
M=O-S)"1s:M where S is the Eshelby tensor
At the same time, compatibility and force equilibrium are simultaneously satisfied

Visco-Plastic self-consistent estimation
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o = C"P: & for various grains in various orientations
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That’s corresponding to finding self-consistent C”P that represents the polycrystal. + f)



Crystal deformation by disl. slip
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2nd order tensor
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Rate-sensitive formula
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Grain spin rate

m®: Schmid tensor

o-n-b°=o.nb: = 10--(b-n- + b-n-) - }0--(b-n- 4+ b-n-)
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If ¢ is symmetric; meaning o;; = 0j;
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Dislocation slip is a simple shear
\/ deformation; which involves
a) pure shear, b) spin (lattice rotation)
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Polycrystal aggregate

The polycrystalline aggregate is represents
by a statistical population of discrete

orientations.

VPSC input texture file

Tue Jun 25 18:07:54 2013
Current texture file was made by cmb.py
contact: youngung.jeong@gmail.com
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b thtragranular fluctuation (inhomogeneity) is discarded

in VPSC
- See full-field crystal plasticity models (FFT, FEM ...)
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(Often) Dummy lines

Orientation notation (B: Bunge), # of Grains

Discrete orientation represents each grain
(inclusion): 3 Euler angles followed by weight

Macrascopic properties in VPSC follow from

‘weighted’ average of individual grains
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