Introduction on Crystal plasticity

강의명: 금속가공학특론 (AMB2004)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-212 전화: 055-213-3694

HOMEPAGE: http://youngung.github.lo

Mathematical treatment on polycrystal behavior

$$\bar{\boldsymbol{\varepsilon}} = \begin{bmatrix} ? & 0 & 0 \\ 0 & ? & 0 \\ 0 & 0 & \bar{\varepsilon}_{33} \end{bmatrix}$$

$$\boldsymbol{\varepsilon}^{\#1} = \overline{\boldsymbol{\varepsilon}} + \widetilde{\boldsymbol{\varepsilon}}^{\#1}$$

$$\boldsymbol{\varepsilon}^{\sharp 2} = \overline{\boldsymbol{\varepsilon}} + \widetilde{\boldsymbol{\varepsilon}}^{\sharp 2}$$

Local inhomogeneity should be influenced by orientation **1**

$$\sigma^{\#1} = \overline{\sigma} + \widetilde{\sigma}^{\#1}$$

$$\sigma^{\text{#2}} = \overline{\sigma} + \widetilde{\sigma}^{\text{#2}}$$

Local inhomogeneity should be influenced by orientation

Some classical models

- Sachs (or more correctly static model; often is assumed for Schmid factor estimations)
 - $m{ ilde{\sigma}}=0$ regardless of orientation
 - Which leads to $\sigma = \overline{\sigma}$
 - Then, one could obtain ε from constitutive law (Linear Hooke's law $\varepsilon = \mathbb{M}$: σ)
 - Summing up $\sum_{\text{grain}}^{\text{n# grain}} \boldsymbol{\varepsilon}^{\text{grain}}$ (= $\langle \boldsymbol{\varepsilon} \rangle$)
 - But it turns out $\langle \varepsilon \rangle \neq \overline{\varepsilon}$ (compatibility is not satisfied; $\langle \sigma \rangle = \overline{\sigma}$ is naturally satisfied.
- Taylor model
 - $\tilde{m{arepsilon}} = 0$ regardless of orientation
 - Which leads to $\boldsymbol{\varepsilon} = \overline{\boldsymbol{\varepsilon}}$
 - Then, one could obtain σ from constitutive law ($\sigma = \mathbb{C}$: ε)
 - Summing up $\sum_{\mathrm{grain}}^{\mathrm{n} \ \# \ \mathrm{grain}} \mathbf{\epsilon}^{\mathrm{grain}}$ (= $\langle \mathbf{\epsilon} \rangle$)
 - But it turns out $\langle \varepsilon \rangle \neq \overline{\varepsilon}$ (compatibility is not satisfied; $\langle \sigma \rangle = \overline{\sigma}$ is naturally satisfied.

Self-consistent approach

- Self-consistent approach
 - $\tilde{\varepsilon} \neq 0$ and $\tilde{\sigma} \neq 0$, both of which are usually determined by following
 - the Eshelby approach $(\widetilde{\boldsymbol{\varepsilon}} = \widetilde{\mathbb{M}} : \widetilde{\boldsymbol{\sigma}})$
 - $\widetilde{\mathbb{M}} = (\mathbb{I} \mathbb{S})^{-1} : \mathbb{S} : \overline{\mathbb{M}}$ where \mathbb{S} is the Eshelby tensor
 - Both strain compatibility and force equilibrium are simultaneously satisfied
- Important contributions
- G. I. Taylor (1938)
 - Upper bound
- Sachs (1928) Static model
 - Lower bound
- Kröner (1958) self-consistent scheme for elasticity
- R. Hill's self-consistent scheme (1965) elastoplastic
- Molinari et al. (1987) Anisotropic inclusion embedded in isotropic HEM
- Carlos Tomé and Ricardo Lebensohn (1993) anisotropic inclusion in anisotropy HEM

Self-consistent estimation of macroscopic properties

Self-consistent estimation

 $\tilde{\boldsymbol{\varepsilon}} \neq 0$ and $\tilde{\boldsymbol{\sigma}} \neq 0$, which is usually determined following the Eshelby approach $(\tilde{\boldsymbol{\varepsilon}} = \widetilde{\mathbb{M}} : \tilde{\boldsymbol{\sigma}})$

 $\widetilde{\mathbb{M}} = (\mathbb{I} - \mathbb{S})^{-1} : \mathbb{S} : \overline{\mathbb{M}}$ where \mathbb{S} is the Eshelby tensor

At the same time, compatibility and force equilibrium are simultaneously satisfied

Elastic self-consistent estimation

 $\sigma = \mathbb{C}$: $\boldsymbol{\varepsilon}$ for various grains in various orientations

 $\overline{\sigma}=\overline{\mathbb{C}}$: $\overline{arepsilon}$ for polycrystal consisting of such grains.

$$\mathbb{C} = \mathbb{M}^{-1}$$

$$\bar{\mathbb{C}} = \bar{\mathbb{M}}^{-1}$$

Anisotropic elasticity (Hooke-Cauchy law)

For polycrystals consisting of single crystal in various orientations?

Can we relate \mathbb{E} of each individual grains to $\overline{\mathbb{E}}$?

Can we obtain $\overline{\mathbb{E}}$ that satisfies

$$\overline{\boldsymbol{\varepsilon}} = \overline{\mathbb{E}} : \overline{\boldsymbol{\sigma}}$$

which can be a function of $\mathbb E$ of grains in various orientation while satisfying

$$\varepsilon = \mathbb{E}$$
: σ and $\langle \varepsilon \rangle = \overline{\mathbb{E}}$: $\langle \sigma \rangle$, and $\langle \varepsilon \rangle = \overline{\varepsilon}$, $\langle \sigma \rangle = \overline{\sigma}$?

That's corresponding to finding self-consistent $\overline{\mathbb{E}}$ that represents the polycrystal.

Self-consistent estimation of macroscopic properties

Self-consistent estimation

 $\tilde{\boldsymbol{\varepsilon}} \neq 0$ and $\tilde{\boldsymbol{\sigma}} \neq 0$, which is usually determined following the Eshelby approach $(\tilde{\boldsymbol{\varepsilon}} = \widetilde{\mathbb{M}} : \tilde{\boldsymbol{\sigma}})$

 $\widetilde{\mathbb{M}} = (\mathbb{I} - \mathbb{S})^{-1} : \mathbb{S} : \overline{\mathbb{M}}$ where \mathbb{S} is the Eshelby tensor

At the same time, compatibility and force equilibrium are simultaneously satisfied

Visco-Plastic self-consistent estimation

 $\sigma = \mathbb{C}^{vp}$: $\dot{\boldsymbol{\varepsilon}}$ for various grains in various orientations

 $\overline{\sigma} = \overline{\mathbb{C}}^{vp}$: $\overline{\dot{\epsilon}}$ for polycrystal consisting of such grains.

anisotropic viscous fluid (Newtonian fluid's law)

For polycrystals consisting of single crystal in various orientations? Can we related \mathbb{C}^{vp} of each individual grains to $\overline{\mathbb{C}}^{vp}$?

Can we obtain $\overline{\mathbb{C}}$ that satisfies

$$ar{\dot{oldsymbol{arepsilon}}} = ar{\mathbb{C}}^{vp} \colon oldsymbol{\overline{\sigma}}$$

which can be a function of ${\mathbb E}$ of grains in various orientation while satisfying

 $\dot{\boldsymbol{\varepsilon}} = \overline{\mathbb{C}}^{vp}$: $\boldsymbol{\sigma}$ and $\langle \dot{\boldsymbol{\varepsilon}} \rangle = \overline{\mathbb{C}}^{vp}$: $\langle \boldsymbol{\sigma} \rangle$, and $\langle \dot{\boldsymbol{\varepsilon}} \rangle = \overline{\dot{\boldsymbol{\varepsilon}}}$, $\langle \boldsymbol{\sigma} \rangle = \overline{\boldsymbol{\sigma}}$?

That's corresponding to finding self-consistent $\bar{\mathbb{C}}^{vp}$ that represents the polycrystal.

Viscous plastic deformation should be accommodated by disl. slips

Crystal deformation by disl. slip

$$\mathbf{a}_{ij}^{\mathsf{CA}\leftarrow\mathsf{SA}} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \mathbf{n}_1 & \mathbf{t}_1 \\ \mathbf{n}_2 & \mathbf{t}_2 \\ \mathbf{n}_3 & \mathbf{t}_3 \end{bmatrix} \text{ where } \mathbf{t} = \mathbf{b} \times \mathbf{n}$$

$$\epsilon_{ij}^{CA} = a_{ik}^{CA \leftarrow SA} a_{jl}^{CA \leftarrow SA} \epsilon_{kl}^{SA}$$

2nd order tensor transformation rule

Among 9 components of ϵ_{kl}^{SA} , only ϵ_{12}^{SA} and ϵ_{21}^{SA} non-zero: (k=1,l=2) or (k=2,k=1)

$$\varepsilon_{ij}^{CA} = a_{i1}^{CA \leftarrow SA} a_{j2}^{CA \leftarrow SA} \varepsilon_{12}^{SA} + a_{i2}^{CA \leftarrow SA} a_{j1}^{CA \leftarrow SA} \varepsilon_{21}^{SA}$$

$$\epsilon_{ij}^{CA} = b_i n_j \frac{1}{2} \gamma + n_i b_j \frac{1}{2} \gamma$$

$$\varepsilon_{ij}^{CA} = \frac{1}{2} (b_i n_j + b_j n_i) \gamma$$

This is for a single slip system.

$$\epsilon_{ij}^{\text{CA}} = m_{ij} \gamma \text{ where } m_{ij} = \frac{1}{2} \big(b_i n_j + b_j n_i \big)$$

$$\epsilon_{ij}^{CA} = \sum_{s}^{N \text{ of slip}} m_{ij}^{s} \gamma^{s}$$

$$\dot{\epsilon}_{ij}^{CA} = \sum_{s}^{N \text{ of slip}} m_{ij}^{s} \dot{\gamma}^{s}$$

Time derivative form.

Rate-sensitive formula

$$\dot{\epsilon}_{ij}^{CA} = \sum_{s}^{N \text{ of slip}} m_{ij}^{s} \dot{\gamma}^{s}$$

$$\dot{\epsilon}_{ij}^{CA} = \sum_{systems.}^{N \text{ of slip}} m_{ij}^{s} \dot{\gamma}^{s}$$

$$\dot{\tau}_{ij}^{S} = \sum_{systems}^{N \text{ of slip}} m_{ij}^{s} \dot{\gamma}^{s}$$

$$\dot{\tau}_{ij}^{S} = \left(\frac{\tau_{RSS}^{S}}{\tau_{o}^{S}}\right)^{1/m} = \left(\frac{\sigma \cdot \mathbf{n}^{S} \cdot \mathbf{b}^{S}}{\tau_{o}^{S}}\right)^{1/m} = \left(\frac{\sigma \cdot \mathbf{n}^{S}}{\tau_{o}^{S}}\right)^{1/m} = \left(\frac{\sigma \cdot \mathbf{n}^{S}}{\tau_{o}^{S}}\right)^{1/m} = \left(\frac{\sigma \cdot \mathbf{n}^{S}}{\tau_{o}^{S}}\right)^{1/m} = \left(\frac{\sigma \cdot \mathbf{n}^{S}}{\tau_{o}^{S}}\right)^{1/m}$$

 τ_{RSS}^{S} : Resolved shear stress on slip system s

m^s: Schmid tensor

$$\dot{\epsilon}_{ij}^{CA} = \sum_{s}^{N \text{ of slip}} m_{ij}^{s} \left(\frac{\sigma: m^{s}}{\tau_{\circ}^{s}}\right)^{1/m} \text{ Recall}$$

$$m_{ij}^{s} = \frac{1}{2} \left(b_{i}^{s} n_{j}^{s} + b_{j}^{s} n_{i}^{s}\right)$$

$$\mathbf{m}_{ij}^{s} = \frac{1}{2} \left(\mathbf{b}_{i}^{s} \mathbf{n}_{j}^{s} + \mathbf{b}_{j}^{s} \mathbf{n}_{i}^{s} \right)$$

$$\mathbf{L} = \dot{\boldsymbol{\varepsilon}} + \dot{\boldsymbol{\omega}} = \sum_{s} \mathbf{m}^{s} \dot{\gamma}^{s} + \sum_{s} \mathbf{q}^{s} \dot{\gamma}^{s} \qquad \mathbf{q}^{s}_{ij} = \frac{1}{2} (\mathbf{b}^{s}_{i} \mathbf{n}^{s}_{j} - \mathbf{b}^{s}_{j} \mathbf{n}^{s}_{i})$$

$$q_{ij}^s = \frac{1}{2} \left(b_i^s n_j^s - b_j^s n_i^s \right)$$

Grain spin rate

$$\boldsymbol{\sigma} \cdot \mathbf{n}^{\mathrm{s}} \cdot \mathbf{b}^{\mathrm{s}} = \sigma_{ij} n_i b_j = \frac{1}{2} \sigma_{ij} (b_i n_j + b_j n_i) = \frac{1}{2} \sigma_{ji} (b_i n_j + b_j n_i)$$

If σ is symmetric; meaning $\sigma_{ii} = \sigma_{ii}$

Slip and Lattice rotations

(110)

Polycrystal aggregate

The polycrystalline aggregate is representeth tragranular fluctuation (inhomogeneity) is discarded by a statistical population of *discrete* orientations.

in VPSC

- See full-field crystal plasticity models (FFT, FEM ...)

VPSC input texture file

Tue Jun 25 18:07:54 2013			
Current texture file was made by cmb.py			
contact: youngung.jeong@gmail.com			
B 2000			
63.2250082	57.1281552	4.3953561	1.3825509e-04
116.7749918	122-8718448	-175.6046439	1.3825509e-04
-63.2250082	122.8718448	-175.6046439	1.3825509e-04
-116.7749918	57.1281552	4.3953561	1.3825509e-04
14.9941829	86.2185766	51.6090972	2.4673198e-04
165.0058171	93.7814234	-128.3909028	-2. 4673198e-04
-14.9941829	93.7814234	-128.3909028	2.4673198e-04
-165.0058171	86.2185766	51.6090972	2.4673198e-04
34.9540018	73.9669201	69.3593877	6.5328445e-04
145.0459982	106.0330799	-110.6406123	6.5328445e-04
-34.9540018	106.0330799	-110.6406123	6.5328445e-04
-145.0459982	73.9669201	69.3593877	6.5328445e-04
13.6175819	25.0736041	54.9601498	5.3392363e-04

(Often) Dummy lines

Orientation notation (B: Bunge), # of Grains

Discrete orientation represents each grain (inclusion): 3 Euler angles followed by weight

Macroscopic properties in VPSC follow from 'weighted' average of individual grains

$$\bar{\epsilon}_{ij} = \sum_{g}^{2600} f^g \epsilon_{ij}^g = \langle \epsilon_{ij} \rangle$$