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Mathematical treatment on polycrystal behavior
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Some classical models
§Sachs (or more correctly static model; often is assumed for Schmid factor estimations)
§ !" = 0 regardless of orientation
§ Which leads to " = %"
§ Then, one could obtain & from constitutive law (Linear Hooke’s law ' = (:*)
§ Summing up ∑,-./0

0# ,-./0 ',-./0 = &
§ But it turns out & ≠ 3& (compatibility is not satisfied; ⟨"⟩ = %" is naturally satisfied.

§Taylor model
§ 6& = 0 regardless of orientation
§ Which leads to & = 3&
§ Then, one could obtain " from constitutive law (* = ℂ: &)
§ Summing up ∑,-./0

0 # ,-./0 ',-./0 = &
§ But it turns out & ≠ 3& (compatibility is not satisfied; ⟨"⟩ = %" is naturally satisfied.



Self-consistent approach
§Self-consistent approach
§ !" ≠ 0 and %& ≠ 0, both of which are usually determined by following 

§ the Eshelby approach (!" = (): %&)

§ () = + − - ./: -: 0) where   - is the Eshelby tensor

§ Both strain compatibility and force equilibrium are simultaneously satisfied

§Important contributions

oG. I. Taylor (1938)
o Upper bound

oSachs (1928) – Static model
o Lower bound

oKröner (1958) – self-consistent scheme for elasticity

oR. Hill’s self-consistent scheme (1965) – elastoplastic

oMolinari et al. (1987) – Anisotropic inclusion embedded in isotropic HEM

oCarlos Tomé and Ricardo Lebensohn (1993) – anisotropic inclusion in anisotropy HEM



Self-consistent estimation of macroscopic properties
Self-consistent estimation

!" ≠ 0 and %& ≠ 0, which is usually determined following 
the Eshelby approach (!" = (): %&)
() = + − - ./: -: 0) where   - is the Eshelby tensor

At the same time, compatibility and force equilibrium are simultaneously satisfied

Elastic self-consistent estimation
& = ℂ: " for various grains in various orientations
0& = 2ℂ: 2" for polycrystal consisting of such grains.

For	polycrystals	consisting	of	single	crystal	in	various	orientations?
Can	we	relate	H of each individual grains to 0H?
Can we obtain 0H that satisfies

2" = 0H: 0&
which can be a function of H of grains in various orientation while satisfying
" = H: & and " = 0H: & , and " = 2", & = 0&?
That’s corresponding to finding self-consistent 0H that represents the polycrystal.

Anisotropic elasticity (Hooke-Cauchy law)

ℂ = )./

2ℂ = 0)./



Self-consistent estimation of macroscopic properties

Visco-Plastic self-consistent estimation
! = ℂ$%: (̇ for various grains in various orientations
)! = *ℂ$%: *̇( for polycrystal consisting of such grains.

Self-consistent estimation
+, ≠ 0 and /0 ≠ 0, which is usually determined following 

the Eshelby approach (+, = 12: /0)
12 = 3 − 5 67: 5: )2 where   5 is the Eshelby tensor

At the same time, compatibility and force equilibrium are simultaneously satisfied

anisotropic viscous fluid 
(Newtonian fluid’s law)

For	polycrystals	consisting	of	single	crystal	in	various	orientations?

Can	we	related	ℂNO of each individual grains to *ℂNO?
Can we obtain *ℂ that satisfies

*̇, = *ℂNO: )0
which can be a function of P of grains in various orientation while satisfying
,̇ = *ℂNO: 0 and ,̇ = *ℂNO: 0 , and ,̇ = *̇,, 0 = )0?
That’s corresponding to finding self-consistent *ℂNO that represents the polycrystal.
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Crystal deformation by disl. slip
Viscous plastic deformation should 

be accommodated by disl. slips
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*% 2nd order tensor 
transformation rule

Among 9 components of ε:;*%, only 
ε(+
*% and ε+(*% non-zero: (k=1,l=2) or (k=2,k=1)
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slip system.
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Rate-sensitive formula
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Slip and Lattice rotations

Dislocation slip is a simple shear 
deformation; which involves 
a) pure shear, b) spin (lattice rotation)
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Polycrystal aggregate
§The polycrystalline aggregate is represented 
by a statistical population of discrete 
orientations.

Intragranular fluctuation (inhomogeneity) is discarded 
in VPSC

- See full-field crystal plasticity models (FFT, FEM …)

(Often) Dummy lines

VPSC input texture file

Orientation notation (B: Bunge), # of Grains

Discrete orientation represents each grain 
(inclusion): 3 Euler angles followed by weight

Macroscopic properties in VPSC follow from 
‘weighted’ average of individual grains
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